

1

Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high level abstractions in data by using a deep graph with multiple processing layers, composed of multiple linear and non-linear transformations.

Deep learning is part of a broader family of machine learning methods based on learning representations of data.

3

Admin

Assignment 8

Deep learning

Key: learning better features that abstract from the "raw" data

Using learned feature representations based on large amounts of data, generally unsupervised

Using classifiers with multiple layers of learning

4

5

Importance of features

Feature quality is critical to the performance of ML methods

Normal process $=$ hand-crafted features

Deep learning: find algorithms to automatically discover features from the data

7

Deep learning for neural networks

Traditional NN models: 1-2 hidden layers
Deep learning NN models: 3+ hidden layers

6

8

9

Deep learning
Growing field
Driven by:
$\quad \square$ Increase in data availability
$\quad \square$ Increase in computational power
\quad Parallelizability of many of the algorithms
Involves more than just neural networks (though,
they're a very popular model)

11

10

word2vec
How many people have heard of it?
What is it?

12

Word representations

Wine data uses word occurrences as a feature

What does this miss?

15

Word representations

Wine data uses word occurrences as a feature

What does this miss?
"The wine had a dark red color" Zinfandel
"The wine was a deep crimson color" label?
"The wine was a deep yellow color" label?

Would like to recognize that words have similar meaning even though they aren't lexically the same

14

16

Word representations

Key idea: project words into a multi-dimensional
"meaning" space

$$
\text { word } \quad \Rightarrow \quad\left[x_{1}, x_{2}, \ldots, x_{d}\right]
$$

The idea of word representations is not new:

- Co-occurrence matrices

17
I like to ___ bananas with cream eat

19

A prediction problem

Use data like this to learn a distribution:
p (word \mid context $)$

$$
p\left(w_{i} \mid w_{i-2} w_{i-1} w_{i+1} w_{i+2}\right)
$$

words before words after

21
"One-hot" encoding

For a vocabulary of V words, have V input nodes

All inputs are 0 except the for the one corresponding to the word

23

24

25

27

28

29

Results				
$\text { vector(word } 1)- \text { vector }(\text { word } 2)=\text { vector }(\text { word } 3)-X$ word1 is to word2 as word3 is to X				
Type of relationship Common capital city All capital cities Currency City-in-state Man-Woman	Wo Athens Astana Angola Chicago brother	air 1 Grecece Kazakhstan kwanza \#linois sister	\quad O \quad O Harare Iran Stockon grandson	Pair 2 Norway Zimbabwe rial California granddaughter

31

Word representation | The weights for each word |
| :--- |
| provide an N dimensional |
| mapping of the word |

30

Results				
$\text { vector(word } 1)- \text { vector(word2) }=\text { vector(word3) }-X$ word 1 is to word 2 as word 3 is to X				
Type of relationship	Word Pair 1		Word Pair 2	
Adjective to adverb Opposite Comparative Superlative Present Participle Nationality adjective Past tense Plural nouns Plural verbs	apparent possibly great easy think Switzerland walking mouse work	apparently impossibly greater easiest thinking Swiss walked mice works	rapid ethical tough lucky read Cambodia swimming dollar speak	rapidly unethical tougher luckiest reading Cambodian swam dollars speaks

32

33

Visualized

35

34

36

37
word2vec resources
https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/
https://code.google.com/archive/p/word2vec/
https://deeplearning4j.org/word2vec
https://arxiv.org/pdf/1301.3781v3.pdf

39

word2vec

A model for learning word representations from large amounts of data

Has become a popular pre-processing step for learning a more robust feature representation

Models like word2vec have also been incorporated into other learning approaches (e.g. translation tasks)

38

Image classification

40

41

43

Challenge: many different features

42

44

45

Traditional NN approach doesn't work

The information of image is the pixel

If we're dealing with a 512×512 RGB image, we have $512 \times 512 \times 3=786,432$ inputs

How many weights will we have with 5 hidden nodes?

For example, a 512×512 RGB image has $512 \times 512 \times 3=$ 786,432 and therefore 786,432 weights in the next layer per neuron

47

Traditional NN approach doesn't work

In this case, the red weights will be modified to better recognize cats

In this case, the green weights will be modified.

46

Traditional NN approach doesn't work

The information of image is the pixel

If we're dealing with a 512×512 RGB image, we have $512 \times 512 \times 3=786,432$ inputs

786,432 weights per neuron $=\sim \mathbf{4} \mathrm{M}$ weights!

48

49

51

Locally connected
image features are usually local
reduce the fully-connected network to locallyconnected network.

For example, if we set window size 5 , we only need $5 \times 5 \times 3=75$

50

52

53

Too many weights!

Despite only locally-connected, there are still too many weights
$512 \times 512 \times 5$ neurons in the next layer, we have $5 \times 5 \times 3$ local connections $=98$ million weights

Share weights:

All weights to a given hidden node are the same for the locally-connected edges

During classifying, we treat it like we have different edges, just with the same weight

During training, we update the weights as normal except we update the same weights for a given hidden node

Solves the positional issue!

56

Share weights

We share parameter in the same depth.

57

Pool layers

Convolution layers are often followed by pool layers

Reduce the weights without losing too much information

Max pooling

Single depth slice

60

61

Next class

