DEEP LEARNING
David Kauchak CS158 – Spring 2022

	Admin
4	Assignment 8

Deep learning

4

Key: learning better features that abstract from the "raw" data

Using learned feature representations based on large amounts of data, generally unsupervised

Using classifiers with multiple layers of learning

Importance of features

Feature quality is critical to the performance of ML methods

Normal process = hand-crafted features

Deep learning: find algorithms to automatically discover features from the data

word2vec

How many people have heard of it?

What is it?

Word representations

Wine data uses word occurrences as a feature

What does this miss?

Wine data uses word occurrences as a feature

Word representations

What does this miss?

14

"The wine had a dark red color"	Zinfandel
"The wine was a deep crimson color"	label?
"The wine was a deep yellow color"	label?

Would like to recognize that words have similar meaning even though they aren't lexically the same

13

vector(word1) - vector(word2) = vector(word3) - X
word1 is to word2 as word3 is to X

Type of relationship	Word Pair 1		Word Pair 2	
Adjective to adverb	apparent	apparently	rapid	rapidly
Opposite	possibly	impossibly	ethical	unethical
Comparative	great	greater	tough	tougher
Superlative	easy	easiest	lucky	luckiest
Present Participle	think	thinking	read	reading
Nationality adjective	Switzerland	Swiss	Cambodia	Cambodian
Past tense	walking	walked	swimming	swam
Plural nouns	mouse	mice	dollar	dollars
Plural verbs	work	works	speak	speaks

Results			
ctor(word1)	- vector(word2)	= vector(word3) - X
	vector(wordz)	- vecioi(wordb) - X
word1 is	to word2 as word3	3 is to X	
).		
	Newspaper	S	D LL G
New York	New York Times	Baltimore	Baltimore Sun
San Jose	San Jose Mercury News	Cincinnati	Cincinnati Enquirer
	NHL Team	IS	
Boston	Boston Bruins	Montreal	Montreal Canadiens
Phoenix	Phoenix Coyotes	Nashville	Nashville Predators
	NBA Team	IS	
Detroit	Detroit Pistons	Toronto	Toronto Raptors
Oakland	Golden State Warriors	Memphis	Memphis Grizzlies
Gunnunu	Airlines	memphis	intempino Offizinteo
Austria	Austrian Airlines	Spain	Spainair
Delaium	Drusseals Airlines	Greene	
Beiglum	Brussels Airlines	Greece	Aegean Airlines
	Company exec	utives	
		Larry Page	Google
Steve Ballmer	Microsoft	Larry rage	Google

Country and Capital Vectors Projected by PCA

≫Beijing

≫Warsaw ≫Berlin Paris

→Athens Rome

1.5

Madrid Lisbon

0.5

≫Moscow ≫Ankara ≫Tokyo

China -

-0.5

0

2-Dimensional projection of the N-dimensional space

Russia Japan

Turkey

-1

Poland

Germany France

Italy

-1.5

2

1.5

1

0.5

0

-0.5

-1 Spair

-1.5 - Portugal

-2 L -2

34

36

word2vec

A model for learning word representations from large amounts of data

Has become a popular pre-processing step for learning a more robust feature representation

Models like word2vec have also been incorporated into other learning approaches (e.g. translation tasks)

38

word2vec resources

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

https://code.google.com/archive/p/word2vec/

https://deeplearning4j.org/word2vec

https://arxiv.org/pdf/1301.3781v3.pdf

40

Locally connected

image features are usually local

reduce the fully-connected network to locallyconnected network.

For example, if we set window size 5, we only need 5x5x3 = 75

50

