NEURAL NETWORKS
David Kauchak CS158 – Spring 2022

	Admin
	Assignment 7
2	

Weight wi

Input x1

A neuron/perceptron

Inputs Inputs Inputs Inputs Information of the answers become inputs for the next level

NN decision boundaries

Theorem 9 (Two-Layer Networks are Universal Function Approximators). Let *F* be a continuous function on a bounded subset of *D*-dimensional space. Then there exists a two-layer neural network \hat{F} with a finite number of hidden units that approximate *F* arbitrarily well. Namely, for all \mathbf{x} in the domain of *F*, $|F(\mathbf{x}) - \hat{F}(\mathbf{x})| < \epsilon$.

Put simply: two-layer networks can approximate any function

53

54

