

1

Perceptron learning algorithm
repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{n}$, label):

$$
\text { prediction }=b+\sum_{i=1}^{n} w_{i} f_{i}
$$

if prediction * label ≤ 0 : // they don't agree
for each w_{i} :
$w_{i}=w_{i}+f_{i}^{*}$ label
$b=b+$ label

Why is it called the "perceptron" learning algorithm if what it learns is a line? Why not "line learning" algorithm?

Admin

Assignment 7

4

5

7

6

8

9

11

12

13

14

15

16

17

19

18

Neural networks
Different kinds/characteristics of networks

20

21

23

Hidden units/layers

22

24

25

27

26

NN decision boundary

What does the decision boundary of a perceptron look like?
Line (linear set of weights)
28

29

31

30

32

33

34

35

36

$$
\begin{aligned}
\text { Let } \mathrm{x}_{2}=0, & \text { then: } \\
x_{1}-0.5 & =0 \\
x_{1} & =0.5
\end{aligned}
$$

37

38

39

Fill in the truth table

40

41

42

45

46

47

This decision boundary?

48

51

52

NN decision boundaries

Theorem 9 (Two-Layer Networks are Universal Function Approximators). Let F be a continuous function on a bounded subset of D-dimensional space. Then there exists a two-layer neural network \hat{F} with a finite number of hidden units that approximate F arbitrarily well. Namely, for all x in the domain of $F,|F(\boldsymbol{x})-\hat{F}(\boldsymbol{x})|<\boldsymbol{\epsilon}$.

Put simply: two-layer networks can approximate any function

53

55

NN decision boundaries

For DT, as the tree gets larger, the model gets more complex

The same is true for neural networks: more hidden nodes $=$ more complexity

Adding more layers adds even more complexity (and much more quickly)

Good rule of thumb:
number of 2-layer hidden nodes $\leq \frac{\text { number of examples }}{\text { number of dimensions }}$

54

Training multilayer networks

perceptron learning: if the perceptron's output is different than the expected output, update the weights
gradient descent: compare output to label and adjust based on loss function

Any other problem with these for general NNs ?

linear model
56

57

59

Backpropagation: intuition

Gradient descent method for learning weights by optimizing a loss function

1. calculate output of all nodes
2. calculate the weights for the output layer based on the error
3. "backpropagate" errors through hidden layers

58

60

61

63

62

Backpropagation: the details

Gradient descent method for learning weights by optimizing a loss function

1. calculate output of all nodes
2. calculate the updates directly for the output layer
3. "backpropagate" errors through hidden layers

What loss function?

64

Backpropagation: the details

Gradient descent method for learning weights by optimizing a loss function
calculate output of all nodes
2. calculate the updates directly for the output layer
3. "backpropagate" errors through hidden layers

$$
\text { loss }=\sum_{x} \frac{1}{2}(y-\hat{y})^{2} \quad \text { squared error }
$$

65

