	LOGISTIC REGRESSION
	David Kauchak CS158 – Fall 2019
1	

A	Admin	
Ass	Assignment 7	
Gr	Grading update	
2		

Priors

Coin1 data: 3 Heads and 1 Tail Coin2 data: 30 Heads and 10 tails Coin3 data: 2 Tails Coin4 data: 497 Heads and 503 tails

If someone asked you what the probability of heads was for each of these coins, what would you say?

Training revisited

What we're really doing during training is selecting the $\boldsymbol{\Theta}$ that maximizes:

 $p(\theta \mid data)$

i.e.

 $\theta = \operatorname{argmax}_{\theta} p(\theta \,|\, data)$

That is, we pick the most likely model parameters given the data

5

Estimating revisited What are each of these probabilities? $p(\theta \mid data) = \frac{p(data \mid \theta)p(\theta)}{p(data)}$

Estimating revisited

probabilities might be

6

We want to incorporate a prior belief of what the

To do this, we need to break down our probability

 $p(\theta \mid data) = ?$

(Hint: Bayes rule)

Coin1 data: 3 Heads and 1 Tail Coin2 data: 30 Heads and 10 tails Coin3 data: 2 Tails Coin4 data: 497 Heads and 503 tails

 $p(x_i | y) = \frac{count(x_i, y) + \lambda}{count(y) + possible_values_of_x_i^* \lambda}$

Does this do the right thing in these cases?

Error minimization

How do we find the minimum of an equation?

$$error(h) = \sum_{i=1}^{n} |y_i - h(f_i)|$$

Take the derivative, set to 0 and solve (going to be a min or a max) $% \left(f_{\alpha}^{(1)} \right) = \left(f_{\alpha}^{(1)} \right) \left(f_{\alpha}^$

Any problems here?

Ideas?

49

51

Probabilistic models summarized

Two classification models:

- Naïve Bayes (models joint distribution)
- Logistic Regression (models conditional distribution)
 In practice this tends to work better if all you want to do is classify

Priors/smoothing/regularization

- Important for both models
- In theory: allow us to impart some prior knowledge
- In practice: avoids overfitting and often tune on development data