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PROBABILISTIC MODELS
David Kauchak
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Admin

Assignment 7
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Midterm

Mean: 34.85
Median: 35
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Probabilistic Modeling
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Model the data with a probabilistic 
model

specifically, learn p(features, label)

p(features, label) tells us how likely 
these features and this example are

probabilistic 
model:

p(features, label)
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Probabilistic models

Probabilistic models define a probability distribution
over features and labels:

probabilistic 
model:

p(features, label)

yellow, curved, no leaf, 6oz, banana 0.004

For each label, ask for the probability under the model
Pick the label with the highest probability

yellow, curved, no leaf, 6oz, apple 0.00002
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Basic steps for probabilistic modeling

Which model do we use, 
i.e. how do we calculate 
p(feature, label)?

How do train the model, 
i.e. how to we we 
estimate the probabilities
for the model?

How do we deal with 
overfitting?

Probabilistic models

Step 1: pick a model

Step 2: figure out how to 
estimate the probabilities for 
the model

Step 3: (optional): deal with 
overfitting
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Basic steps for probabilistic modeling

Which model do we use, 
i.e. how do we calculate 
p(feature, label)?

How do train the model, 
i.e. how to we we 
estimate the probabilities
for the model?

How do we deal with 
overfitting?

Probabilistic models

Step 1: pick a model

Step 2: figure out how to 
estimate the probabilities for 
the model

Step 3 (optional): deal with 
overfitting
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Some math

p( features, label) = p(x1, x2,..., xm, y)

= p(y)p(x1, x2,..., xm | y)

= p(y)p(x1 | y)p(x2,..., xm | y, x1)

= p(y) p(xi
j=1

m

∏ | y, x1,..., xi−1)

= p(y)p(x1 | y)p(x2 | y, x1)p(x3,..., xm | y, x1, x2 )

8
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Step  1: pick a model

p( features, label) = p(y) p(xi
j=1

m

∏ | y, x1,..., xi−1)

So, far we have made NO assumptions about the data

p(xm | y, x1, x2,..., xm−1)

How many entries would the probability distribution table 
have if we tried to represent all possible values (e.g. for 
the wine data set)?
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Full distribution tables

x1 x2 x3 … y p( )

0 0 0 … 0 *
0 0 0 … 1 *
1 0 0 … 0 *
1 0 0 … 1 *
0 1 0 … 0 *
0 1 0 … 1 *

…

Wine problem:
n all possible combination of features

n ~7000 binary features

n Sample space size: 27000 = ?

10

27000

1621696755662202026466665085478377095191112430363743256235982084151527023162702352987080237879
4460004651996019099530984538652557892546513204107022110253564658647431585227076599373340842842
7224200122818782600729310826170431944842663920777841250999968601694360066600112098175792966787
8196255237700655294757256678055809293844627218640216108862600816097132874749204352087401101862
6908423275017246052311293955235059054544214554772509509096507889478094683592939574112569473438
6191215296848474344406741204174020887540371869421701550220735398381224299258743537536161041593
4359455766656170179090417259702533652666268202180849389281269970952857089069637557541434487608
8248369941993802415197514510125127043829087280919538476302857811854024099958895964192277601255
3604911562403499947144160905730842429313962119953679373012944795600248333570738998392029910322
3465980389530690429801740098017325210691307971242016963397230218353007589784519525848553710885
8195631737000743805167411189134617501484521767984296782842287373127422122022517597535994839257
0298779077063553347902449354353866605125910795672914312162977887848185522928196541766009803989
9799168140474938421574351580260381151068286406789730483829220346042775765507377656754750702714
4662263487685709621261074762705203049488907208978593689047063428548531668665657327174660658185
6090664849508012761754614572161769555751992117507514067775104496728590822558547771447242334900
7640263217608921135525612411945387026802990440018385850576719369689759366121356888838680023840
9325673807775018914703049621509969838539752071549396339237202875920415172949370790977853625108
3200928396048072379548870695466216880446521124930762900919907177423550391351174415329737479300
8995583051888413533479846411368000499940373724560035428811232632821866113106455077289922996946
9156018580839820741704606832124388152026099584696588161375826382921029547343888832163627122302
9212297953848683554835357106034077891774170263636562027269554375177807413134551018100094688094
0781122057380335371124632958916237089580476224595091825301636909236240671411644331656159828058
3720783439888562390892028440902553829376

Any problems with this?
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Full distribution tables

x1 x2 x3 … y p( )

0 0 0 … 0 *
0 0 0 … 1 *
1 0 0 … 0 *
1 0 0 … 1 *
0 1 0 … 0 *
0 1 0 … 1 *

…

- Storing a table of that size is impossible
- How are we supposed to learn/estimate each entry 

in the table?

12
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Step  1: pick a model

p( features, label) = p(y) p(xi
j=1

m

∏ | y, x1,..., xi−1)

So, far we have made NO assumptions about the data

Model selection involves making assumptions about the data

We did this before, e.g. assume the data is linearly separable

These assumptions allow us to represent the data more compactly 
and to estimate the parameters of the model

13

An aside: independence

Two variables are independent if one has nothing to do 
with the other

For two independent variables, knowing the value of one 
does not change the probability distribution of the other 
variable (or the probability of any individual event)

¤ the result of the toss of a coin is independent of a roll of a die

¤ the price of tea in England is independent of the whether or 
not you pass ML

14

independent or dependent?

Catching a cold and raining in NY

Miles per gallon and driving habits

Height and longevity of life
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How does independence affect our probability 
equations/properties?

If A and B are independent (written A ⫫ B )
¤ P(A,B) = ?
¤ P(A|B) = ?

¤ P(B|A) = ?

Independent variables

16
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How does independence affect our probability 
equations/properties?

If A and B are independent (written A ⫫ B )
¤ P(A,B) = P(A)P(B)
¤ P(A|B) = P(A)

¤ P(B|A) = P(B)

Independent variables

How does independence help us?

17

Independent variables

If A and B are independent
¤ P(A,B) = P(A)P(B)
¤ P(A|B) = P(A)

¤ P(B|A) = P(B)

Reduces the storage requirement for the distributions

Reduces the complexity of the distribution

Reduces the number of probabilities we need to estimate
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Conditional Independence

Dependent events can become independent given certain other events

Examples,
¤ height and length of life
¤ “correlation” studies

n size of your lawn and length of life

If A, B are conditionally independent given C (written A ⫫ B |C)

¤ P(A,B|C) = P(A|C)P(B|C)

¤ P(A|B,C) = P(A|C)

¤ P(B|A,C) = P(B|C)

¤ but P(A,B) ≠ P(A)P(B)

19

Naïve Bayes assumption

p( features, label) = p(y) p(xi
j=1

m

∏ | y, x1,..., xi−1)

What does this assume?

p(xi | y, x1, x2,..., xi−1) = p(xi | y)

20
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Naïve Bayes assumption

p( features, label) = p(y) p(xi
j=1

m

∏ | y, x1,..., xi−1)

p(xi | y, x1, x2,..., xi−1) = p(xi | y)

Assumes feature i is independent of the the other 
features given the label (i.e. is conditionally independent 
given the label)

For the wine problem?

21

Naïve Bayes assumption

p(xi | y, x1, x2,..., xi−1) = p(xi | y)

Assumes feature i is independent of the the other 
features given the label

Assumes the probability of a word occurring in a review 
is independent of the other words given the label

For example, the probability of “pinot” occurring is 
independent of whether or not “wine” occurs given that 
the review is about “chardonnay”

Is this assumption true?

22

Naïve Bayes assumption

p(xi | y, x1, x2,..., xi−1) = p(xi | y)

For most applications, this is not true!

For example, the fact that “pinot” occurs will probably 
make it more likely that “noir” occurs (or other compound 
phrases like “San Francisco”)

However, this is often a reasonable approximation:

p(xi | y, x1, x2,..., xi−1) ≈ p(xi | y)
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Naïve Bayes model

p( features, label) = p(y) p(xi
j=1

m

∏ | y, x1,..., xi−1)

= p(y) p(xi
j=1

m

∏ | y) naïve bayes assumption

How do we model this?
- for binary features
- for discrete features, i.e. counts
- for real valued features

p(xi|y) is the probability of a particular feature value given the label

24
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p(x|y)

Binary features:

p(xi | y) =
θi if  xi =1

1−θi otherwise

"
#
$

%$

Other features:
Could use a lookup table for each value, but doesn’t generalize well

Better, model as a distribution:
- gaussian (i.e. normal) distribution
- poisson distribution 
- multinomial distribution (more on this later)
- …

biased coin toss!
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Basic steps for probabilistic modeling

Which model do we use, 
i.e. how do we calculate 
p(feature, label)?

How do train the model, 
i.e. how to we we 
estimate the probabilities
for the model?

How do we deal with 
overfitting?

Probabilistic models

Step 1: pick a model

Step 2: figure out how to 
estimate the probabilities for 
the model

Step 3 (optional): deal with 
overfitting

26

Obtaining probabilities

We’ve talked a lot about probabilities, but not where 
they come from

¤ How do we calculate p(xi|y) from training data?
¤ What is the probability of surviving the titanic?
¤ What is the probability that a review is about Pinot Noir?
¤ What is the probability that a particular review is about 

Pinot Noir?

H H H H HT T T T T

27

Obtaining probabilities

tra
in

in
g 

da
ta probabilistic 

model

tra
in

p(y) p(xi
j=1

m

∏ | y)

p(y)

p(x1 | y)

p(x2 | y)

p(xm | y)

…

28
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Estimating probabilities

What is the probability of a pinot noir review?

We don’t know!

We can estimate it based on data, though:

number of reviews labeled pinot noir

total number of reviews

This is called the maximum likelihood estimation.  Why?

29

Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation picks the values for the 
model parameters that maximize the likelihood of the 
training data

You flip a coin 100 times.  60 times you get heads 
and 40 times you get tails.

What is the MLE estimate for heads?

p(head) = 0.60 why?

30

Likelihood

The likelihood of a data set is the probability that a 
particular model (i.e. a model and estimated 
probabilities) assigns to the data

likelihood(data) = pθ (xi )
i=1

n

∏

for each example how probable is it under the model

the model parameters (e.g. probability of heads)

31

Likelihood

You flip a coin 100 times.  60 times you get heads and 
40 times you get tails.

likelihood(data) = pθ (xi )
i=1

n

∏

for each example how probable is it under the model

the model parameters (e.g. probability of heads)

What is the likelihood of this data with Θ=p(head) = 0.6 ?

32
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Likelihood

You flip a coin 100 times.  60 times you get heads and 
40 times you get tails.

likelihood(data) = pθ (xi )
i=1

n

∏

What is the likelihood of this data with Θ=p(head) = 0.6 ?

0.6060 * 0.4040 = 5.908465121038621e-30

60 heads with p(head) = 0.6 40 tails with p(tail) = 0.4

33

MLE example

Can we do any better? likelihood(data) = p(xi )i∏

0.6060 * 0.4040 = 5.908465121038621e-30

60 heads with p(head) = 0.6 40 tails with p(tail) = 0.4

What about p(head) = 0.5?

34

MLE example

Can we do any better? likelihood(data) = p(xi )i∏

0.6060 * 0.4040 = 5.908465121038621e-30

60 heads with p(head) = 0.6 40 tails with p(tail) = 0.4

0.5060 * 0.5040 = 7.888609052210118e-31

60 heads with p(head) = 0.5 40 tails with p(tail) = 0.5
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MLE example

Can we do any better? likelihood(data) = p(xi )i∏

0.6060 * 0.4040 = 5.908465121038621e-30

60 heads with p(head) = 0.6 40 tails with p(tail) = 0.4

What about p(head) = 0.7?

36
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MLE example

Can we do any better? likelihood(data) = p(xi )i∏

0.6060 * 0.4040 = 5.908465121038621e-30

60 heads with p(head) = 0.6 40 tails with p(tail) = 0.4

0.7060 * 0.3040 = 6.176359828759916e-31

60 heads with p(head) = 0.7 40 tails with p(tail) = 0.3

37

MLE Example

0

1E-30

2E-30

3E-30

4E-30

5E-30

6E-30

7E-30

0 .01 0 .06 0 .11 0 .16 0 .21 0 .26 0 .31 0 .36 0 .41 0 .46 0 .51 0 .56 0 .61 0 .66 0 .71 0 .76 0 .81 0 .86 0 .91 0 .96

Li
ke

lih
oo

d

p(heads)
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Maximum Likelihood Estimation (MLE)

The maximum likelihood estimate for a model 
parameter is the one that maximize the likelihood of 
the training data

MLE = argmaxθ pθ (xi )
i=1

n

∏

Often easier to work with log-likelihood:

MLE = argmaxθ log( pθ (xi )
i=1

n

∏ )

= argmaxθ log(p(xi ))
i=1

n

∑

Why is this ok?

39

Calculating MLE

The maximum likelihood estimate for a model 
parameter is the one that maximize the likelihood of 
the training data

MLE = argmaxθ log(p(xi ))
i=1

n

∑

Given some training data, how do we calculate the MLE?

You flip a coin 100 times.  60 times you get heads and 40 times you get tails.

40



3/3/22

11

Calculating MLE

You flip a coin 100 times.  60 times you get heads and 40 times you get tails.

log− likelihood = log(p(xi ))
i=1

n

∑

= 60 log(θ )+ 40 log(1−θ )

= 60 log(p(heads))+ 40 log(p(tails))

MLE = argmaxθ 60 log(θ )+ 40 log(1−θ )

How do we find the max?

41

Calculating MLE

d
dθ
60 log(θ )+ 40 log(1−θ ) = 0

You flip a coin 100 times.  60 times you get heads and 40 times you get tails.

60
θ
−
40
1−θ

= 0

40
1−θ

=
60
θ

40θ = 60− 60θ

100θ = 60

θ =
60
100

Yay!

42

Calculating MLE

d
dθ

a log(θ )+ b log(1−θ ) = 0

You flip a coin n times.  a times you get heads and b times you get tails.

θ =
a

a+ b

…

43

MLE estimation for NB

p(y) p(xi | y)probabilistic 
model

tra
in

p(y) p(xi
j=1

m

∏ | y)

tra
in

in
g 

da
ta

What are the MLE estimates 
for these?

44
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Maximum likelihood estimates

p(xi | y) =
count(xi, y)
count(y)

p(y) = count(y)
n

number of examples with label y

total number of examples

number of examples with label y with feature xi = 1

number of examples with label

What does training a NB model then involve?
How difficult is this to calculate?

45

Naïve Bayes classification

NB Model

p(features, label)yellow, curved, no leaf, 6oz, banana 0.004

How do we use a probabilistic model for classification/prediction?

Given an unlabeled example: yellow, curved, no leaf, 6oz predict the label

p(y) p(xi
j=1

m

∏ | y)

46

Probabilistic models

probabilistic 
model:

p(features, label)

yellow, curved, no leaf, 6oz, banana

yellow, curved, no leaf, 6oz, apple

p(y) p(xi
j=1

m

∏ | y)

pick largest

argmaxy∈labels p(y) p(xi
j=1

m

∏ | y)label = 

47

Generative Story

To classify with a model, we’re given an example and we obtain 
the probability

We can also ask how a given model would generate a document

This is the “generative story” for a model

Looking at the generative story can help understand the model 

We also can use generative stories to help develop a model

48
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NB generative story

p(y) p(xi
j=1

m

∏ | y)

What is the generative story for the NB model?

49

NB generative story

1. Pick a label according to p(y)
- roll a biased, num_labels-sided die

2. For each feature:
- Flip a biased coin:

- if heads, include the feature
- if tails, don’t include the feature

p(y) p(xi
j=1

m

∏ | y)

What about for modeling wine reviews?

50

NB decision boundary

= argmaxy∈labels p(y) p(xi
j=1

m

∏ | y)label  

What does the decision boundary for 
NB look like if the features are binary?

51

Some math

label = log(argmaxy∈labels p(y) p(xi
j=1

m

∏ | y))

= argmaxy∈labels log(p(y))+ log(p(xi | y))
i=1

m

∑

= argmaxy∈labelslog(p(y))+ xi log(p(xi | y))+ xi log(1− p(xi | y))
i=1

m

∑

p(xi | y) =
θi if  xi =1

1−θi otherwise

"
#
$

%$
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Some more math

labels = argmaxy∈labelslog(p(y))+ xi log(p(xi | y))+ xi log(1− p(xi | y))
i=1

m

∑

= argmaxy∈labelslog(p(y))+ xi log(p(xi | y))− xi log(1− p(xi | y)+ log(1− p(xi | y)
i=1

m

∑

= argmaxy∈labelslog(p(y))+ xi log(p(xi | y))+ (1− xi )log(1− p(xi | y))
i=1

m

∑
(because xi are binary)

= argmaxy∈labelslog(p(y))+ xi log
p(xi | y)

1− p(xi | y)
#

$
%

&

'
(+ log(1− p(xi | y)

i=1

m

∑

53

And…

What does this look like?

= argmaxy∈labelslog(p(y))+ log(1− p(xi | y))
i=1

m

∑ + xi log
p(xi | y)

1− p(xi | y)
$

%
&

'

(
)

i=1

m

∑

labels = argmaxy∈labelslog(p(y))+ xi log
p(xi | y)

1− p(xi | y)
#

$
%

&

'
(+ log(1− p(xi | y)

i=1

m

∑
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And…

labels = argmaxy∈labelslog(p(y))+ xi log
p(xi | y)

1− p(xi | y)
#

$
%

&

'
(+ log(1− p(xi | y)

i=1

m

∑

= argmaxy∈labelslog(p(y))+ log(1− p(xi | y))
i=1

m

∑ + xi log
p(xi | y)

1− p(xi | y)
$

%
&

'

(
)

i=1

m

∑

Linear model !!!

b xi * wi+

w x + b What are the weights?

55

NB as a linear model

wi = log
p(xi | y)

1− p(xi | y)
"

#
$

%

&
'

How likely this feature is to 
be 1 given the label

How likely this feature is to 
be 0 given the label

- low weights indicate there isn’t much difference
- larger weights (positive or negative) indicate feature is important

56
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Maximum likelihood estimation

Intuitive

Sets the probabilities so as to maximize the 
probability of the training data

Problems?
¤ Overfitting!
¤ Amount of data

n particularly problematic for rare events
¤ Is our training data representative

57

Basic steps for probabilistic modeling

Which model do we use, 
i.e. how do we calculate 
p(feature, label)?

How do train the model, 
i.e. how to we we 
estimate the probabilities
for the model?

How do we deal with 
overfitting?

Probabilistic models

Step 1: pick a model

Step 2: figure out how to 
estimate the probabilities for 
the model

Step 3 (optional): deal with 
overfitting

58

Coin experiment

59 60
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Back to parasitic gaps

Say the actual probability is 1/100,000

We don’t know this, though, so we’re estimating it from a small 
data set of 10K sentences

What is the probability that we have a parasitic gap sentence in 
our sample?

61

Back to parasitic gaps

p(not_parasitic) = 0.99999

p(not_parasitic)10000 ≈ 0.905 is the probability of us NOT finding 
one

Then probability of us finding one is ~10%
¨ 90% of the time we won’t find one and won’t know anything 

(or assume p(parasitic) = 0)
¨ 10% of the time we would find one and incorrectly assume the 

probability is 1/10,000 (10 times too large!)

Solutions?

62

Priors

Coin1 data: 3 Heads and 1 Tail
Coin2 data: 30 Heads and 10 tails
Coin3 data: 2 Tails
Coin4 data:  497 Heads and 503 tails

If someone asked you what the probability of heads 
was for each of these coins, what would you say?

63


