

1

3

Admin

Assignment 7

5

Basic steps for probabilistic modeling	
Step 1: pick a model	Probabilistic models Which model do we use, i.e. how do we calculate p(feature, label)?
Step 2: figure out how to estimate the probabilities for the model	How do train the model, i.e. how to we we estimate the probabilities for the model?
Step 3 (optional): deal with overfitting	How do we deal with overfitting?

7

Basic steps for probabilistic modeling	
Step 1: pick a model	Probabilistic models Which model do we use, i.e. how do we calculate p(feature, label)?
Step 2: figure out how to estimate the probabilities for the model	How do train the model, i.e. how to we we estimate the probabilities for the modele ?
Step 3: (optional): deal with overfitting	How do we deal with overfitting?

6

Some math	
$p($ features, label $)$	$=p\left(x_{1}, x_{2}, \ldots, x_{m}, y\right)$
	$=p(y) p\left(x_{1}, x_{2}, \ldots, x_{m} \mid y\right)$
	$=p(y) p\left(x_{1} \mid y\right) p\left(x_{2}, \ldots, x_{m} \mid y, x_{1}\right)$
	$=p(y) p\left(x_{1} \mid y\right) p\left(x_{2} \mid y, x_{1}\right) p\left(x_{3}, \ldots, x_{m} \mid y, x_{1}, x_{2}\right)$
	$=p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right)$

8

> How many entries would the probability distribution table have if we tried to represent all possible values (e.g. for the wine data set)?

9

1621696755662202026466065085478377095191112430363743256235982084151527023162702352987080237879
 ${ }_{819625523770065529475725667805580929384462721218640216108862600816097132874749204352087401101862}$ 6908423275017246052311293955235059054544214554772509509096507889478094683592939574112569473438 6191215296848474344406741204174020887540371869421701550220735398381224299258743537536161041593
 3604911562403499947144160905730842429313962119953679373012944795600248333570738998392029910322 3465980389530690429801740098017325210691307971242016963397230218353007589784519525848553710885 8195631737000743805167411189134617501484521767984296782842287373127422122022517597535994839257 0298779077063553347902449354353866605125910795672914312162977887848185522928196541766009803989
9799168140474938421574351580260381151068286406789730483829202346042775765507377656754750702714 4662263487685709621261074762705203049488907208978593689047063428548531668665657327174660658185 009066484950801276175451457216176955575199211750751406777510449672859582255854777144724233490 93256738077750189140304962150996983853975207154939633923720287592041517294937079097785362510 3200928396048072379548870695466216880446521124930762900919907177423550391351174415329737479300 8995583051888413533479846411368000499940373724560035428811232632821866113106455077289922996946
9156018580839820741704606832124388152026099584695588161375826382921029547343888832163627122302 915601858083982074170460683212438815202609958469658816137582638292102954734388883216362712230
9212297953848683554835357106034077891774170263636562027269554375177807413134551018100094688094
 3720783439888562390892028440902553829376

Any problems with this?

Full distribution tables

x_{1}	x_{2}	x_{3}	\ldots	y	$p()$
0	0	0	\ldots	0	$*$
0	0	0	\ldots	1	$*$
1	0	0	\ldots	0	$*$
1	0	0	\ldots	1	$*$
0	1	0	\ldots	0	$*$
0	1	0	\ldots	1	$*$

Storing a table of that size is impossible
How are we supposed to learn/estimate each entry in the table?

12

Step 1: pick a model

$$
p(\text { features,label })=p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right)
$$

So, far we have made NO assumptions about the data

Model selection involves making assumptions about the data

We did this before, e.g. assume the data is linearly separable

These assumptions allow us to represent the data more compactly and to estimate the parameters of the model

independent or dependent?

Catching a cold and raining in NY

Miles per gallon and driving habits

Height and longevity of life

15

An aside: independence

Two variables are independent if one has nothing to do with the other

For two independent variables, knowing the value of one does not change the probability distribution of the other variable (or the probability of any individual event)
\square the result of the toss of a coin is independent of a roll of a die
\square the price of tea in England is independent of the whether or not you pass ML

14

Independent variables

How does independence affect our probability equations/properties?

If A and B are independent (written $A \Perp B$)
$\square P(A, B)=$?
$\square P(A \mid B)=$?
$\square P(B \mid A)=$?

> If A and B are independent (written $A \Perp B)$
> $\square P(A, B)=P(A) P(B)$
> $\square P(A \mid B)=P(A)$
> $\square P(B \mid A)=P(B)$
How does independence help us?

17

19

Independent variables

If A and B are independent
$\square P(A, B)=P(A) P(B)$
$\square P(A \mid B)=P(A)$
$\square P(B \mid A)=P(B)$

Reduces the storage requirement for the distributions

Reduces the complexity of the distribution

Reduces the number of probabilities we need to estimate

18
Naive Bayes assumption
$p($ features, label $)=p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right)$
$p\left(x_{i} \mid y, x_{1}, x_{2}, \ldots, x_{i-1}\right)=p\left(x_{i} \mid y\right)$
What does this assume?

20

Naïve Bayes assumption

$$
p(\text { features,label })=p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right)
$$

$$
p\left(x_{i} \mid y, x_{1}, x_{2}, \ldots, x_{i-1}\right)=p\left(x_{i} \mid y\right)
$$

Assumes feature i is independent of the the other features given the label (i.e. is conditionally independent given the label)

For the wine problem?

21

Naïve Bayes assumption

$$
p\left(x_{i} \mid y, x_{1}, x_{2}, \ldots, x_{i-1}\right)=p\left(x_{i} \mid y\right)
$$

For most applications, this is not true!
For example, the fact that "pinot" occurs will probably make it more likely that "noir" occurs (or other compound phrases like "San Francisco")

However, this is often a reasonable approximation:

$$
p\left(x_{i} \mid y, x_{1}, x_{2}, \ldots, x_{i-1}\right) \approx p\left(x_{i} \mid y\right)
$$

Naïve Bayes assumption

$$
p\left(x_{i} \mid y, x_{1}, x_{2}, \ldots, x_{i-1}\right)=p\left(x_{i} \mid y\right)
$$

Assumes feature i is independent of the the other features given the label

Assumes the probability of a word occurring in a review is independent of the other words given the label

For example, the probability of "pinot" occurring is independent of whether or not "wine" occurs given that the review is about "chardonnay"
Is this assumption true?

22

Naïve Bayes model

$$
\begin{aligned}
p(\text { features,label }) & =p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right) \\
& =p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y\right) \quad \text { naiive bayes assumption }
\end{aligned}
$$

$p\left(x_{i} \mid y\right)$ is the probability of a particular feature value given the label
How do we model this?

- for binary features
- for discrete features, i.e. counts
- for real valued features

24

25

Obtaining probabilities

We've talked a lot about probabilities, but not where they come from

- How do we calculate $p\left(x_{i} \mid y\right)$ from training data?
- What is the probability of surviving the titanic?
- What is the probability that a review is about Pinot Noir?
- What is the probability that a particular review is about Pinot Noir?

Basic steps for probabilistic modeling	
Step 1: pick a model	Probabilistic models Which model do we use, i.e. how do we calculate p(feature, label)?
Step 2: figure out how to estimate the probabilities for the model	How do train the model, i.e. how to we we estimate the probabilities for the model?
Step 3 (optional): deal with overfitting	How do we deal with overfitting?

26

28

29

Likelihood

The likelihood of a data set is the probability that a particular model (i.e. a model and estimated probabilities) assigns to the data

the model parameters (e.g. probability of heads)

Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation picks the values for the model parameters that maximize the likelihood of the training data

You flip a coin 100 times. 60 times you get heads and 40 times you get tails.

What is the MLE estimate for heads?

$$
p(\text { head })=0.60 \quad \text { why? }
$$

30

32

33

35

34

36

37

Maximum Likelihood Estimation (MLE)

The maximum likelihood estimate for a model parameter is the one that maximize the likelihood of the training data

$$
M L E=\arg \max _{\theta} \prod_{i=1}^{n} p_{\theta}\left(x_{i}\right)
$$

Often easier to work with log-likelihood:

$$
\begin{aligned}
M L E & =\operatorname{argmax}_{\theta} \log \left(\prod_{i=1}^{n} p_{\theta}\left(x_{i}\right)\right) \quad \text { Why is this ok? } \\
& =\operatorname{argmax}_{\theta} \sum_{i=1}^{n} \log \left(p\left(x_{i}\right)\right)
\end{aligned}
$$

38

Calculating MLE

The maximum likelihood estimate for a model parameter is the one that maximize the likelihood of the training data

$$
M L E=\operatorname{argmax}_{\theta} \sum_{i=1}^{n} \log \left(p\left(x_{i}\right)\right)
$$

Given some training data, how do we calculate the MLE?
You flip a coin 100 times. 60 times you get heads and 40 times you get tails.

40

41

Calculating MLE

You flip a coin n times. a times you get heads and b times you get tails.

$$
\frac{d}{d \theta} a \log (\theta)+b \log (1-\theta)=0
$$

$$
\theta=\frac{a}{a+b}
$$

43

Calculating MLE

You flip a coin 100 times. 60 times you get heads and 40 times you get tails.

$$
\frac{d}{d \theta} 60 \log (\theta)+40 \log (1-\theta)=0
$$

$$
\frac{60}{\theta}-\frac{40}{1-\theta}=0
$$

$$
\frac{40}{1-\theta}=\frac{60}{\theta}
$$

$$
40 \theta=60-60 \theta
$$

$$
100 \theta=60
$$

$$
\theta=\frac{60}{100} \quad \text { Yay! }
$$

42

44

45

47

46

48

49

NB decision boundary
label $=\operatorname{argmax}_{y \in \text { labels }} p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y\right)$

What does the decision boundary for NB look like if the features are binary?

51

NB generative story

$$
p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y\right)
$$

1. Pick a label according to $p(y)$
roll a biased, num_labels-sided die
2. For each feature:

Flip a biased coin:
if heads, include the feature
if tails, don't include the feature

What about for modeling wine reviews?

50

Some math	
$\begin{aligned} \text { label } & =\log \left(\operatorname{argmax}_{y \in \text { labels }} p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y\right)\right) \\ & =\operatorname{argmax}_{y \in \text { labels }} \log (p(y))+\sum_{i=1}^{m} \log \left(p\left(x_{i} \mid y\right)\right) \\ & =\operatorname{argmax}_{y \in \text { labels }} \log (p(y))+\sum_{i=1}^{m} x_{i} \log \left(p\left(x_{i} \mid y\right)\right)+\bar{x}_{i} \log \left(1-p\left(x_{i} \mid y\right)\right) \end{aligned}$	

52

53

55

And...

labels $=\operatorname{argmax}_{y \in \operatorname{labels}} \log (p(y))+\sum_{i=1}^{m} x_{i} \log \left(\frac{p\left(x_{i} \mid y\right)}{1-p\left(x_{i} \mid y\right)}\right)+\log \left(1-p\left(x_{i} \mid y\right)\right.$
$=\operatorname{argmax}_{y \in l a b e l s} \log (p(y))+\sum_{i=1}^{m} \log \left(1-p\left(x_{i} \mid y\right)\right)+\sum_{i=1}^{m} x_{i} \log \left(\frac{p\left(x_{i} \mid y\right)}{1-p\left(x_{i} \mid y\right)}\right)$

What does this look like?

54

NB as a linear model
How likely this feature is to be 1 given the label
How likely this feature is to be 0 given the label
- low weights indicate there isn't much difference - larger weights (positive or negative) indicate feature is important

56

Maximum likelihood estimation
Intuitive
Sets the probabilities so as to maximize the
probability of the training data
Problems?
- Overfitting!
\square Amount of data
■ particularly problematic for rare events
Is our training data representative

57

Coin experiment

58

60

Back to parasitic gaps

Say the actual probability is $1 / 100,000$

We don't know this, though, so we're estimating it from a small data set of 10 K sentences

What is the probability that we have a parasitic gap sentence in our sample?

61

Back to parasitic gaps

$\mathrm{p}($ not_parasitic $)=0.99999$
$\mathrm{p}(\text { not_parasitic })^{10000} \approx 0.905$ is the probability of us NOT finding one

Then probability of us finding one is $\sim 10 \%$

- 90% of the time we won't find one and won't know anything (or assume p (parasitic) $=0$)
- 10% of the time we would find one and incorrectly assume the probability is $1 / 10,000$ (10 times too large!)

Solutions?

62

Priors

Coin1 data: 3 Heads and 1 Tail
Coin2 data: 30 Heads and 10 tails
Coin3 data: 2 Tails
Coin4 data: 497 Heads and 503 tails

If someone asked you what the probability of heads was for each of these coins, what would you say?

63

