CS158 - Spring 2022

1

Admin

Midterm: back on Thursday

Assignment grading update

Assignment 6

2

Basic probability theory: terminology

An event is a subset of the sample space

Dice rolls
ㅁ $\{2\}$

- $\{3,6\}$
- even $=\{2,4,6\}$
- $\operatorname{odd}=\{1,3,5\}$

Machine learning

- A particular feature has particular values
- An example, i.e. a particular setting of feature values
- label = Chardonnay

4

Events
We're interested in probabilities of events
םp(\{2\})
םp(label=survived)
םp(label=Chardonnay)
םp("Pinot" occurred)

5

Random variables

We're interested in the probability of the different values of a random variable

The definition of probabilities over all of the possible values of a random variable defines a probability distribution

space	HHH	HHT	HTH	HTT	THH	THT	TTH	TTT
X	3	2	2	1	2	1	1	0

7

Random variables								
A random variable is a mapping from the sample space to a number (think events) It represents all the possible values of something we want to measure in an experiment For example, random variable, X, could be the number of heads for a coin								
space	HHH	HHT	HTH	HTT	тнн	THT	тTH	TIT
x	3	2	2	1	2	1	1	0
Really for notational convenience, since the event space can sometimes be irregular								

6

8

Unconditional/prior probability
Simplest form of probability is $\square P(X)$
Prior probability: without any additional information, what is the probability - What is the probability of heads? - What is the probability of surviving the titanic? - What is the probability of a wine review containing the word "banana"? - What is the probability of a passenger on the titanic being under 21 years old? ㅁ..

9

Joint distribution		
Still a probability distribution - all values between 0 and 1 , inclusive - all values sum to 1		
All questions/probabilities of the two variables can be calculate from the joint distribution		
MLPass AND EngPass	P(MLPass, EngPass)	What is P(ENGPass)?
true, true	. 88	
true, false	. 01	
false, true	. 04	
false, false	. 07	

11

Joint distr	ution
We can also talk about probability distributions over multiple variables	
$P(X, Y)$	
probability of X and Y	
- a distribution over the cross product of possible values	
MLPass AND EngPass	P(MLPass, EngPass)
true, true	. 88
true, false	. 01
false, true	. 04
false, false	. 07

10

Joint distribution			
Still a probability distribution a all values between 0 and 1 , inclusive all values sum to 1			
All questions/probabilities of the two variables can be calculate from the joint distribution			
MLPass AND EngPass	P(MLPass, EngPass)		
	.88		
true, true			
true, false			
false, true			
false, false	.01	\quad	How did you
:---			

12

13

In terms of pior and joint distributions, what is the conditional probability distribution?

17

19

18

A note about notation

When talking about a particular random variable value, you should technically write $p(X=x)$, etc.

However, when it's clear, we'll often shorten it

Also, we may also say $P(X)$ or $p(x)$ to generically mean any particular value, i.e. $P(X=x)$
$\frac{P(\text { true }, \text { false })=0.01}{P(\text { EngPass }=\text { false })=0.01+0.07=0.08}=0.125$
$P($ EngPass $=$ false $)=0.01+0.07=0.08$

20

$$
P(A \text { or } B)=?
$$

21

23

Properties of probabilities
$P(A$ or $B)=P(A)+P(B)-P(A, B)$

22

Chain rule (aka product rule)
$p(X \mid Y)=\frac{P(X, Y)}{P(Y)} \quad \square p(X, Y)=P(X \mid Y) P(Y)$

We can view calculating the probability of X AND Y occurring as two steps:

1. Y occurs with some probability $P(Y)$
2. Then, X occurs, given that Y has occurred
or you can just trust the math... :)

24

$$
p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=?
$$

25

Bayes' rule (theorem)

$$
\begin{aligned}
& p(X \mid Y)=\frac{P(X, Y)}{P(Y)} \quad \square p(X, Y)=P(X \mid Y) P(Y) \\
& p(Y \mid X)=\frac{P(X, Y)}{P(X)} \quad \longleftrightarrow p(X, Y)=P(Y \mid X) P(X) \\
& p(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
\end{aligned}
$$

Applications of the chain rule

We saw that we could calculate the individual prior probabilities using the joint distribution

$$
p(x)=\sum_{y \in Y} p(x, y)
$$

What if we don't have the joint distribution, but do have conditional probability information:

- $P(Y)$

ㅁ $P(X \mid Y)$

$$
p(x)=\sum_{y \in Y} p(y) p(x \mid y)
$$

26
Bayes' rule
Allows us to talk about $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$ rather than $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})$
Sometimes this can be more intuitive
Why?

$$
p(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
$$

28

29

31

30

32

33

Parasitic gaps

http://literalminded.wordpress.com/2009/02/10/do ugs-parasitic-gap/

35

Parasitic gaps

These l'll put $\overline{\overline{\text { gap }}}$ away without folding $\overline{\overline{\text { gap }}}$.

1. Cannot exist by themselves (parasitic)

These l'll put my pants away without folding \qquad .
gap
2. They're optional

These l'll put \qquad away without folding them. gap

34

Frequency of parasitic gaps

Parasitic gaps occur on average in 1/100,000 sentences

Problem:
Your friend has developed a machine learning approach to identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it doesn't, it will incorrectly say it does with probability 0.005 . Suppose we run it on a sentence and the algorithm says it is a parasitic gap, what is the probability it actually is?

36

37

Prob of parasitic gaps

Your friend has developed a machine learning approach to identify parasitic gaps.
If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it
doesn't, it will incorrectly say it does with probability 0.005 . Suppose we run it on a
sentence and the algorithm says it is a parasitic gap, what is the probability it actually is?
$G=$ gap $\mathrm{T}=$ test positive

$$
p(g \mid t)=\frac{p(t \mid g) p(g)}{p(t)}
$$

$$
=\frac{p(t \mid g) p(g)}{\sum_{g \in G} p(g) p(t \mid g)}=\frac{p(t \mid g) p(g)}{p(g) p(t \mid g)+p(\bar{g}) p(t \mid \bar{g})}
$$

Prob of parasitic gaps

Your friend has developed a machine learning approach to identify parasitic gaps.
If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it doesn't, it will incorrectly say it does with probability 0.005 . Suppose we run it on a sentence and the algorithm says it is a parasitic gap, what is the probability it actually is?

G = gap $\mathrm{T}=$ test positive
$p(g \mid t)=$?

38

Prob of parasitic gaps

Your friend has developed a machine learning approach to identify parasitic gaps.
If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it
doesn't, it will incorrectly say it does with probability 0.005 . Suppose we run it on a sentence and the algorithm says it is a parasitic gap, what is the probability it actually is?

$$
\begin{aligned}
p(g \mid t) & =\frac{p(t \mid g) p(g)}{p(g) p(t \mid g)+p(\bar{g}) p(t \mid \bar{g})} \\
& \begin{array}{l}
\mathrm{G}=\text { gap } \\
\mathrm{T}=\text { test positive }
\end{array} \\
& =\frac{0.95 * 0.00001}{0.00001 * 0.95+0.99999 * 0.005} \approx 0.002
\end{aligned}
$$

40

41

43

42

Probabilistic model vs. classifier

44

Given an unlabeled example: yellow, curved, no leaf, boz predict the label

How do we use a probabilistic model for classification/prediction?
45

47

Probabilistic models

Probabilistic models define a probability distribution over features and labels:

For each label, ask for the probability under the model Pick the label with the highest probability

46

Probabilistic models

Probabilities are nice to work with

\square range between 0 and 1
\square can combine them in a well understood way

- lots of mathematical background/theory
\square an aside: to get the benefit of probabilistic output you can sometimes calibrate the confidence output of a nonprobabilistic classifier

Provide a strong, well-founded groundwork

- Allow us to make clear decisions about things like regularization
- Tend to be much less "heuristic" than the models we've seen
- Different models have very clear meanings

Probabilistic models: big questions

Which model do we use, i.e. how do we calculate p(feature, label)?

How do train the model, i.e. how do we we estimate the probabilities for the model?

How do we deal with overfitting?

49
\(\left.$$
\begin{array}{|l|l|}\hline \text { Basic steps for probabilistic modeling } \\
\text { Step 1: pick a model } & \begin{array}{l}\text { Probabilistic models } \\
\text { Step 2: figure out how to } \\
\text { Which model do we use, } \\
\text { e.i. how do we calculate } \\
\text { p(feature, label)? }\end{array} \\
\text { the model probabilities for }\end{array}
$$ \quad \begin{array}{l}How do train the model,

i.e. how to we we

estimate the probabilities

for the model?\end{array}\right]\)| How do wee deal with |
| :--- |
| overfitting? |

51

Same problems we've been dealing	
with so far	ML in general
Probabilistic models Which model do we use, i.e. how do we calculate p(feature, label)? How do train the model, i.e. how to we we estimate the probabilities for the model?Which model do we use (decision tree, linear model, non-parametric)	
How do we deal with overfitting?	How do train the model?

50

Basic steps for probabilistic modeling	
Step 1: pick a model	Probabilistic models Which model do we use, i.e. how do we calculate p(feature, label)?
Step 2: figure out how to estimate the probabilities for the model	How do train the model, i.e. how to we we estimate the probabilities for the model?
Step 3 (optional): deal with overfitting	How do we deal with overfitting?

53

55

Step 1: picking a model

What we're really trying to do is model the data generating distribution, that is how likely the feature/label combinations are

54

Some math
$p($ features, label $)=p\left(x_{1}, x_{2}, \ldots, x_{m}, y\right)$
$=p(y) p\left(x_{1}, x_{2}, \ldots, x_{m} \mid y\right)$
$=p(y) p\left(x_{1} \mid y\right) p\left(x_{2}, \ldots, x_{m} \mid y, x_{1}\right)$
$=p(y) p\left(x_{1} \mid y\right) p\left(x_{2} \mid y, x_{1}\right) p\left(x_{3}, \ldots, x_{m} \mid y, x_{1}, x_{2}\right)$
$=p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right)$
56

57

Full distribution tables

x_{1}	x_{2}	x_{3}	\ldots	y	$p()$
0	0	0	\ldots	0	$*$
0	0	0	\cdots	1	$*$
1	0	0	\cdots	0	$*$
1	0	0	\cdots	1	$*$
0	1	0	\cdots	0	$*$
0	1	0	\cdots	1	$*$
			\cdots		

Wine problem:

- all possible combination of features
- ~7000 binary features
- Sample space size: $2^{7000}=$?

58

