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LARGE MARGIN CLASSIFIERS

David Kauchak
CS 158 – Spring 2022
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Admin

Assignment 5
¤ Experiments

Assignment 6: due Tuesday (3/1)

Next class: Meet in Edmunds 105

Midterm: out and due by the end of the day Friday

Course feedback
¤ Thanks!
¤ We’ll go over it at the beginning of next class
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Which hyperplane?

Two main variations in linear classifiers:
- which hyperplane they choose when the data is linearly separable
- how they handle data that is not linearly separable
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Linear approaches so far

Perceptron:
- separable:
- non-separable:

Gradient descent:
- separable:
- non-separable:
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Linear approaches so far

Perceptron:
- separable: 
- finds some hyperplane that separates the data

- non-separable:
- will continue to adjust as it iterates through the examples
- final hyperplane will depend on which examples it saw recently

Gradient descent:
- separable and non-separable
- finds the hyperplane that minimizes the objective function (loss + 

regularization)

Which hyperplane is this?
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Which hyperplane would you choose?
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Large margin classifiers

Choose the line where the distance to the nearest 
point(s) is as large as possible

margin margin

7

Large margin classifiers

The margin of a classifier is the distance to the closest points of either class

Large margin classifiers attempt to maximize this

margin margin
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Support vectors

For any separating hyperplane, there exist some set of “closest points”

These are called the support vectors

For n dimensions, there will be at least n+1 support vectors 

9

Measuring the margin

The margin is the distance to the support vectors, i.e.
the “closest points”, on either side of the hyperplane
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Measuring the margin

w ⋅ xi + b = 0
w ⋅ xi + b < 0
negative examples

w ⋅ xi + b > 0
positive examples
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Measuring the margin

w ⋅ xi + b = 0
w ⋅ xi + b < 0
negative examples

w ⋅ xi + b > 0
positive examples

What are the equations for the margin lines?
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Measuring the margin

w ⋅ xi + b = 0
w ⋅ xi + b = −c

w ⋅ xi + b = c

What is c?

We know they’re the same distance apart (otherwise, they wouldn’t be 
support vectors!)
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Measuring the margin

w ⋅ xi + b = 0

w ⋅ xi + b = −c

w ⋅ xi + b = c

Depends! If we scale w, we vary the constant without changing the 
separating hyperplane
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Measuring the margin

w ⋅ xi + b = 0

w ⋅ xi + b = c

Depends! If we scale w, we vary the constant without changing the 
separating hyperplane

Larger w result in 
larger constants

w ⋅ xi + b = −c
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Measuring the margin

w ⋅ xi + b = 0

w ⋅ xi + b = c

Depends! If we scale w, we vary the constant without changing the 
separating hyperplane

Smaller w result in 
smaller constants

w ⋅ xi + b = −c

16
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Measuring the margin

w ⋅ xi + b =1

For now, let’s assume c = 1.

What is this distance?

w ⋅ xi + b = −1

17

Distance from the hyperplane

w=(1,2)

f1

f2

(-1,-2)

How far away is this point from the hyperplane?
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Distance from the hyperplane

f1

f2

(-1,-2)

How far away is this point from the hyperplane?

w=(1,2)

𝑑 = −1 2 +(−2)2 = 5
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Distance from the hyperplane

f1

f2

(1,1)

How far away is this point from the hyperplane?

w=(1,2)

20
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Distance from the hyperplane

f1

f2

(1,1)

How far away is this point from the hyperplane?

w=(1,2)

d(x) = w ⋅ x + b

Is it?
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Distance from the hyperplane

f1

f2

(1,1)

Does that seem right?  What’s the problem?

w=(1,2)

d(x) = w ⋅ x + b

= w1x1 +w2x2 + b

=1*1+1*2+ 0

= 3?
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Distance from the hyperplane

f1

f2

(1,1)

How far away is the point from the hyperplane?

w=(2,4)

d(x) = w ⋅ x + b

23

Distance from the hyperplane

f1

f2

(1,1)

How far away is the point from the hyperplane?

w=(2,4)

d(x) = w ⋅ x + b

= w1x1 +w2x2 + b

= 2*1+ 4*2+ 0

=10?
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Distance from the hyperplane

f1

f2

(1,1)

How far away is this point from the hyperplane?

w=(1,2)

d(x) = w ⋅ x + b
w

length normalized 
weight vectors

25

Distance from the hyperplane

f1

f2

(1,1)

How far away is this point from the hyperplane?

w=(1,2)

=
w1x1 +w2x2( )+ b

5

=
1*1+1*2( )+ 0

5
=1.34

d(x) = w ⋅ x + b
w

26

Distance from the hyperplane

f1

f2

(1,1)

The magnitude of the weight vector doesn’t matter

w=(2,4)

length normalized 
weight vectors

d(x) = w ⋅ x + b
w

27

Distance from the hyperplane

f1

f2

(1,1)

w=(0.5,1)

d(x) = w ⋅ x + b
w

length normalized 
weight vectors

The magnitude of the weight vector doesn’t matter
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Measuring the margin

w ⋅ xi + b = −1

w ⋅ xi + b =1

For now, let’s just assume c = 1.

What is this distance?

29

Measuring the margin

w ⋅ xi + b = −1

w ⋅ xi + b =1

For now, let’s just assume c = 1.

w ⋅ xi + b
w

=
1
w
?

30

Measuring the margin

w ⋅ xi + b = −1

w ⋅ xi + b =1

For now, let’s just assume c = 1.

w ⋅ xi + b
w

=
1
w

31

Large margin classifier setup

Select the hyperplane with the largest margin where the 
points are classified correctly and outside the margin!

Setup as a constrained optimization problem:

maxw,b   margin(w,b)

yi (w ⋅ xi + b) ≥1  ∀i
subject to:

what does this say?

32
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Large margin classifier setup

Select the hyperplane with the largest margin where the 
points are classified correctly and outside the margin!

Setup as a constrained optimization problem:

maxw,b   1
w

yi (w ⋅ xi + b) ≥1  ∀i
subject to:

33

Maximizing the margin

subject to:

Maximizing the margin is equivalent to minimizing 𝒘 !
(subject to the separating constraints)

minw,b   w

yi (w ⋅ xi + b) ≥1  ∀i

34

Maximizing the margin

subject to:

minw,b   w

yi (w ⋅ xi + b) ≥1  ∀i
The constraints:
1. make sure the data is separable
2. encourages w to be larger (once the data is separable)

The minimization criterion wants w to be as small as possible

35

Measuring the margin

w ⋅ xi + b = −1

w ⋅ xi + b =1

For now, let’s just assume c = 1.

Claim: it does not matter 
what c we choose for the 
SVM problem. Why?

36
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Measuring the margin

w ⋅ xi + b = −c

w ⋅ xi + b = c

What is this distance?

37

Measuring the margin

w ⋅ xi + b = −c

w ⋅ xi + b = c

w ⋅ xi + b
w

=
c
w

38

Maximizing the margin

subject to:

minw,b   
w
c

yi (w ⋅ xi + b) ≥ c  ∀i

vs.

subject to:

minw,b   w

yi (w ⋅ xi + b) ≥1  ∀i

What’s the difference?
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Maximizing the margin

subject to:

minw,b   
w
c

yi (w ⋅ xi + b) ≥ c  ∀i

vs.

subject to:

minw,b   w

yi (w ⋅ xi + b) ≥1  ∀i

Learn the exact same 
hyperplane just scaled by a 
constant amount

Because of this, often see it 
with c = 1

40
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For those that are curious…
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Maximizing the margin: the real problem

yi (w ⋅ xi + b) ≥1  ∀i
subject to:

Why the squared?

minw,b   w 2
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Maximizing the margin: the real problem

yi (w ⋅ xi + b) ≥1  ∀i

subject to:

minw,b   w 2
= wii∑

2

yi (w ⋅ xi + b) ≥1  ∀i
subject to:

minw,b   w = wii∑
2

Minimizing 𝒘 is equivalent to minimizing 𝒘 2

The sum of the squared weights is a convex function!

43

Support vector machine problem

yi (w ⋅ xi + b) ≥1  ∀i
subject to:

minw,b   w 2

This is a version of a quadratic optimization problem

Maximize/minimize a quadratic function

Subject to a set of linear constraints

Many, many variants of solving this problem (we’ll see one in a bit)

44
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Soft Margin Classification  

What about this problem?

yi (w ⋅ xi + b) ≥1  ∀i
subject to:

minw,b   w 2

45

Soft Margin Classification  

yi (w ⋅ xi + b) ≥1  ∀i
subject to:

minw,b   w 2

We’d like to learn something like this, 
but our constraints won’t allow it L

46

Slack variables

yi (w ⋅ xi + b) ≥1  ∀i
subject to:

minw,b   w 2

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

slack variables 
(one for each example)

What effect does this have?

47

Slack variables

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

slack penalties

48
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Slack variables

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

allowed to make a mistake

penalized by how far 
from “correct”

trade-off between margin 
maximization and penalizationmargin

49

Soft margin SVM

Still a quadratic optimization problem!

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

50

Demo

http://cs.stanford.edu/people/karpathy/svmjs/demo/

51

Solving the SVM problem

52

http://cs.stanford.edu/people/karpathy/svmjs/demo/
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Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

Given the optimal solution, w, b:

Can we figure out what the slack penalties are for each point?

53

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

What do the margin lines
represent wrt w,b?
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Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

w ⋅ xi + b =1
w ⋅ xi + b = −1

Or: yi (w ⋅ xi + b) =1

55

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

What are the slack values for points outside (or on) the 
margin AND correctly classified? 

56
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Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

0!  The slack variables have to be greater than or equal to zero 
and if they’re on or beyond the margin then yi(wxi+b) ≥ 1 already

57

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

What are the slack values for points inside the margin 
AND classified correctly?
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Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

Difference from the point to the margin. Which is?

ς i =1− yi (w ⋅ xi + b)
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Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

What are the slack values for points that are incorrectly 
classified?

60
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Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

Which 
is?
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Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

“distance” to the hyperplane plus the “distance” to the margin

?
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Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

“distance” to the hyperplane plus the “distance” to the margin

−yi (w ⋅ xi + b) Why -?
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Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

“distance” to the hyperplane plus the “distance” to the margin

−yi (w ⋅ xi + b) ?

64
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Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

“distance” to the hyperplane plus the “distance” to the margin

−yi (w ⋅ xi + b) 1

65

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

yi (w ⋅ xi + b) =1

“distance” to the hyperplane plus the “distance” to the margin

ς i =1− yi (w ⋅ xi + b)
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Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

ς i =
0 if  yi (w ⋅ xi + b) ≥1

1− yi (w ⋅ xi + b) otherwise

$
%
&

'&
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Understanding the Soft Margin SVM

ς i =
0 if  yi (w ⋅ xi + b) ≥1

1− yi (w ⋅ xi + b) otherwise

$
%
&

'&

ς i =max(0,1− yi (w ⋅ xi + b))

=max(0,1− yy ')

Does this look familiar?
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Hinge loss!

l(y, y ') =1 yy ' ≤ 0[ ]0/1 loss:

Hinge: l(y, y ') =max(0,1− yy ')

Exponential: l(y, y ') = exp(−yy ')

Squared loss: l(y, y ') = (y− y ')2

69

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

ς i =max(0,1− yi (w ⋅ xi + b))

Do we need the constraints still?

70

Understanding the Soft Margin SVM

yi (w ⋅ xi + b) ≥1−ς i   ∀i
subject to:

minw,b   w 2
+C ς ii∑

ς i ≥ 0

ς i =max(0,1− yi (w ⋅ xi + b))

minw,b   w 2
+C max(0,1− yi (w ⋅ xi + b))

i∑

Unconstrained problem!

71

Understanding the Soft Margin SVM

minw,b   w 2
+C losshinge(yi, yi ')i∑

Does this look like something we’ve seen before?

argminw,b loss(yy ')+λ  regularizer(w,b)
i=1

n

∑

Gradient descent problem!

72
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Soft margin SVM as gradient descent

minw,b   w 2
+C losshinge(yi, yi ')i∑

argminw,b loss(yy ')+λ  regularizer(w,b)
i=1

n

∑

minw,b   losshinge(yi, yi ')i∑ +
1
C
w 2multiply through by 1/C

and rearrange

minw,b   losshinge(yi, yi ')i∑ +λ w 2
let λ=1/C

What type of gradient descent problem?

73

Soft margin SVM as gradient descent

One way to solve the soft margin SVM problem is 
using gradient descent

minw,b   losshinge(yi, yi ')i∑ +λ w 2

hinge loss L2 regularization

74

Gradient descent SVM solver

¤ pick a starting point (w)
¤ repeat until loss doesn’t decrease in all dimensions:

n pick a dimension
n move a small amount in that dimension towards decreasing loss (using 

the derivative)

wj = wj +η yixi1[yi (w ⋅ x + b)<1]
i=1

n

∑ −ηλwj

wi = wi −η
d
dwi

(loss(w)+ regularizer(w,b))

hinge loss L2 regularization

Finds the largest margin hyperplane while allowing for a soft margin
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Support vector machines: 2013

One of the most successful (if not the most successful) 
classification approach:

Support vector machine

perceptron algorithm

k nearest neighbor

decision tree
2013 2016 2019
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Support vector machines: 2013

One of the most successful (if not the most successful) 
classification approach:

Support vector machine

perceptron algorithm

k nearest neighbor

decision tree
2013 2016 2019 2022
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Trends over time
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