

1

Which hyperplane?


Two main variations in linear classifiers:

- which hyperplane they choose when the data is linearly separable
- how they handle data that is not linearly separable

Linear approaches so far

## Perceptron:

separable:
non-separable:

Gradient descent:
separable:
non-separable:

4

| Linear approaches so far |
| :---: |
| Perceptron: <br> separable: <br> finds some hyperplane that separates the data <br> non-separable: <br> will continue to adjust as it iterates through the examples final hyperplane will depend on which examples it saw recently |
| Gradient descent: separable and non-separable <br> finds the hyperplane that minimizes the objective function (loss + regularization) |
| Which hyperplane is this? |

5


7
finds the hyperplane that minimizes the objective function (loss + regularization)

Which hyperplane is this?


6


8


9


11


10


12


13


15

## Measuring the margin

Depends! If we scale $w$, we vary the constant without changing the separating hyperplane
$w \cdot x_{i}+b=-c$


14


16


17


19


18


20


21


23


22


24


25

27



26


28


29



30



32

$$
y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \quad \forall i
$$

33

| Maximizing the margin |
| :--- |
| The mininimization criterion wants $w$ to be as small as possible |
| $\min _{w, b}\\|w\\|$ |
| subiect to: |
| $y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \quad \forall i$ |
| The constrints |
| 1. moke serf the data is separable |
| 2. encourcaes w to be larger (once the data is separable) |

35

## Maximizing the margin

The minimization criterion wants $w$ to be as small as possible
$\min _{w, b}\|w\|$
$y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \quad \forall i$
The constraints:

1. make sure the data is separable
2. encourages $w$ to be larger (once the data is separable)

## Maximizing the margin

$$
\min _{w, b}\|w\|
$$

subject to:

$$
y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \quad \forall i
$$

Maximizing the margin is equivalent to minimizing $\|w\|$ ! (subject to the separating constraints)

## Measuring the margin

For now, let's just assume c $=1$.


36


37


39


38

Maximizing the margin
$\min _{w, b} \frac{\|w\|}{c}$
subject to
$y_{i}\left(w \cdot x_{i}+b\right) \geq c \quad \forall i \quad$ Learn the exact same
hyperplane just scaled by a constant amount

Because of this, often see it with $\mathrm{c}=1$
subject to:

$$
y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \quad \forall i
$$

40

$$
\begin{aligned}
\frac{\|w\|}{c} & =\frac{\sqrt{w_{1}^{2}+w_{2}^{2}+\ldots+w_{m}^{2}+b^{2}}}{c} \\
& =\sqrt{\left(\frac{\sqrt{w_{1}^{2}+w_{2}^{2}+\ldots+w_{m}^{2}}}{c}\right)^{2}} \\
& =\sqrt{\frac{w_{1}^{2}+w_{2}^{2}+\ldots+w_{m}^{2}}{c^{2}}} \\
& =\sqrt{\frac{w_{1}^{2}}{c^{2}}+\frac{w_{2}^{2}}{c^{2}}+\ldots+\frac{w_{m}^{2}}{c^{2}}} \\
& =\sqrt{\left(\frac{w_{1}}{c}\right)^{2}+\left(\frac{w_{2}}{c}\right)^{2}+\ldots+\left(\frac{w_{m}}{c}\right)^{2}} \quad \text { scaled version of } w
\end{aligned}
$$

41
Maximizing the margin: the real problem

|  |
| :---: | :---: |
| $\min _{w, b}$ |
| subject to: |$\|w\|=\sqrt{\sum_{i} w_{i}{ }^{2}} |$| $\min _{w, b}\\|w\\|^{2}=\sum_{i} w_{i}{ }^{2}$ |
| :---: |
| $y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \forall i$ |

$y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \quad \forall i$

$$
y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \quad \forall i
$$

Minimizing $\|w\|$ is equivalent to minimizing $\|w\|^{2}$
The sum of the squared weights is a convex function
Maximizing the margin: the real problem
$\min _{w, b}\|w\|^{2}$
subject to: $^{y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \quad \forall i}$
Why the squared?

42

## Support vector machine problem

$$
\min _{w, b}\|w\|^{2}
$$

subject to:

$$
y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \quad \forall i
$$

This is a version of a quadratic optimization problem

Maximize/minimize a quadratic function
Subject to a set of linear constraints
Many, many variants of solving this problem (we'll see one in a bit)

44


45


46


47


48


49

## Soft margin SVM

$\min _{w, b}\|w\|^{2}+C \sum_{i} \varsigma_{i}$
subject to:

$$
y_{i}\left(w \cdot x_{i}+b\right) \geq 1-\varsigma_{i} \quad \forall i
$$

$$
\varsigma_{i} \geq 0
$$

Still a quadratic optimization problem!

50


51

Solving the SVM problem


52


53


55


54


56


57


59


58


60


61


63


62


64


65

67
Understanding the Soft Margin SVM

| $\min _{w, b}\\|w\\|^{2}+C \sum_{i} \varsigma_{i}$ |
| :---: |
| subject $^{y_{i}\left(w \cdot x_{i}+b\right) \geq 1-\varsigma_{i} \forall i}$$\varsigma_{i} \geq 0$ |
| $\varsigma_{i}=\left\{\begin{array}{cc}0 & \text { if } y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \\ 1-y_{i}\left(w \cdot x_{i}+b\right) & \text { otherwise }\end{array}\right.$ |



66

Understanding the Soft Margin SVM

$$
\varsigma_{i}=\left\{\begin{array}{cc}
0 & \text { if } y_{i}\left(w \cdot x_{i}+b\right) \geq 1 \\
1-y_{i}\left(w \cdot x_{i}+b\right) & \text { otherwise }
\end{array}\right.
$$



$$
\varsigma_{i}=\max \left(0,1-y_{i}\left(w \cdot x_{i}+b\right)\right)
$$

$$
=\max \left(0,1-y y^{\prime}\right)
$$

Does this look familiar?

68


69

Understanding the Soft Margin SVM

```
        min}w,b |w\mp@subsup{|}{}{2}+C\mp@subsup{\sum}{i}{}\mp@subsup{\varsigma}{i}{
subject to: }\quad\mp@subsup{\varsigma}{i}{}=\operatorname{max}(0,1-\mp@subsup{y}{i}{}(w\cdot\mp@subsup{x}{i}{}+b)
    yi}(w\cdot\mp@subsup{x}{i}{}+b)\geq1-\mp@subsup{\varsigma}{i}{}\quad\forall
            si
```



```
\(\min _{w, b}\|w\|^{2}+C \sum_{i} \max \left(0,1-y_{i}\left(w \cdot x_{i}+b\right)\right)\)

71
\begin{tabular}{|c|}
\hline Understanding the Soft Margin SVM \\
\begin{tabular}{c}
\(\min _{w, b}\|w\|^{2}+C \sum_{i} s_{i}\) \\
subiect to: \\
\(y_{i}\left(w \cdot x_{i}+b\right) \geq 1-\varsigma_{i}\) \\
\(s_{i} \geq 0\)
\end{tabular} \\
Do we need the constraints still? \\
\\
\end{tabular}

70
Understanding the Soft Margin SVM
\(\min _{w, b}\|w\|^{2}+C \sum_{i}\) loss \(_{\text {hinge }}\left(y_{i}, y_{i}{ }^{\prime}\right)\)
Does this look like something we've seen before?
\(\operatorname{argmin}_{w, b} \sum_{i=1}^{n}\) loss \(\left(y y^{\prime}\right)+\lambda\) regularizer \((w, b)\)
Gradient descent problem!

72
\[
\begin{aligned}
\begin{array}{l}
\text { multiply through by } 1 / \mathrm{C} \\
\text { and rearrange }
\end{array} & \min _{w, b} \sum_{i} \operatorname{loss}_{\text {hinge }}\left(y_{i}, y_{i}^{\prime}\right)+\frac{1}{C}\|w\|^{2} \\
\operatorname{let} \lambda=1 / \mathrm{C} \quad & \min _{w, b} \sum_{i} \operatorname{loss}_{\text {hinge }}\left(y_{i}, y_{i}^{\prime}\right)+\lambda\|w\|^{2} \\
& \text { What type of gradient descent problem? } \\
& \operatorname{argmin}_{w, b} \sum_{i=1}^{n} \operatorname{loss}\left(y y^{\prime}\right)+\lambda \text { regularizer }(w, b)
\end{aligned}
\]

73


75

Soft margin SVM as gradient descent

One way to solve the soft margin SVM problem is using gradient descent


\section*{hinge loss}

L2 regularization

74


76


77
```

