

1

Midterm details

Time limited take home exam (you'll have 2 hours to complete it)

Available on Monday (2/21)
Must finish by end of the day on Friday (2/25)

You may use your notes, the class notes, the class book(s), and your assignments

You may NOT use any other resources on the web or search for things on the web

Admin

Assignment 5

Course feedback

Midterm next week

Midterm topics

Machine learning basics
different types of learning problems
feature-based machine learning
data assumptions/data generating distribution

Classification problem setup

Proper experimentation
train/dev/test
evaluation/accuracy/training error
optimizing hyperparameters

4

5

Midterm topics

Comparing algorithms
n-fold cross validation
leave one out validation
bootstrap resampling
t-test
imbalanced data
evaluation
precision/recall, FI , AUC
subsampling
oversampling
weighted binary classifiers

Midterm topics

Geometric view of data
distances between examples
decision boundaries

Features
example features
removing erroneous features/picking good features
challenges with high-dimensional data
feature normalization

Other pre-processing
outlier detection

6

Midterm topics
Multiclass classification
Modifying existing approaches
Using binary classifier
OVA
AVA
Tree-based
micro- vs. macro-averaging
Ranking
using binary classifier
using weighted binary classifier

8

Midterm topics
Gradient descent
$0 / 1$ loss
Surrogate loss functions
Convexity
minimization algorithm
regularization
different regularizers
p-norms

9

How many have you heard of?
(Ordinary) Least squares

Ridge regression

Lasso regression

Elastic regression

Logistic regression

11

Midterm general advice

2 hours goes by fast!

Don't plan on looking everything up

Lookup equations, algorithms, random details
Make sure you understand the key concepts
Don't spend too much time on any one question
Skip questions you're stuck on and come back to them
Watch the time as you go

Be careful on the T/F questions

For written questions
think before you write
make your argument/analysis clear and concise

10

12

Model-based machine learning

1. pick a model

$$
0=b+\sum_{j=1}^{m} w_{j} f_{j}
$$

2. pick a criteria to optimize (aka objective function)

$$
\sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right) \quad \begin{aligned}
& \text { use a convex surrogate } \\
& \text { loss function }
\end{aligned}
$$

3. develop a learning algorithm

$$
\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)
$$

Find w and b that minimize the surrogate loss

Finding the minimum

You're blindfolded, but you can see out of the bottom of the blindfold to the ground right by your feet. I drop you off somewhere and tell you that you're in a convex shaped valley and escape is at the bottom/minimum. How do you get out?

Surrogate loss functions

$$
0 / 1 \text { loss: } \quad l\left(y, y^{\prime}\right)=1\left[y y^{\prime} \leq 0\right]
$$

$$
\text { Hinge: } \quad l\left(y, y^{\prime}\right)=\max \left(0,1-y y^{\prime}\right)
$$

Exponential: $\quad l\left(y, y^{\prime}\right)=\exp \left(-y y^{\prime}\right)$

Squared loss:
$l\left(y, y^{\prime}\right)=\left(y-y^{\prime}\right)^{2}$

14

Gradient descent

\square pick a starting point (w)
\square repeat until loss doesn't decrease in any dimension:

- pick a dimension
move a small amount in that dimension towards decreasing loss (using the derivative)

$$
w_{j}=w_{j}-\eta \frac{d}{d w_{j}} \operatorname{loss}(w)
$$

Perceptron learning algorithm!
repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{m}$, label):
prediction $=b+\sum_{j=1}^{m} w_{j} f_{j}$

if prediction $*$ label $\leq 0: / /$ they don't agree
for each $w_{i}:$
$w_{i}=w_{i}+f_{i} *$ label
$b=b+$ label

$w_{j}=w_{j}+\eta y_{i} x_{i j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)$
or
$w_{j}=w_{j}+x_{i j} y_{i} c \quad$ where $c=\eta \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)$

17

19

18

Overfitting revisited: regularization

A regularizer is an additional criterion to the loss function to make sure that we don't overfit

It's called a regularizer since it tries to keep the parameters more normal/regular

It is a bias on the model that forces the learning to prefer certain types of weights over others

$$
\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \operatorname{loss}\left(y y^{\prime}\right)+\lambda \text { regularizer }(w, b)
$$

21

Regularizers

$$
0=b+\sum_{j=1}^{n} w_{j} f_{j}
$$

Generally, we don't want huge weights
If weights are large, a small change in a feature can result in a large change in the prediction

Also gives too much weight to any one feature

Might also prefer weights of 0 for features that aren't useful

Regularizers

$$
0=b+\sum_{j=1}^{n} w_{j} f_{j}
$$

Should we allow all possible weights?
Any preferences?
What makes for a "simpler" model for a linear model?

22

Regularizers

$$
0=b+\sum_{j=1}^{n} w_{j} f_{j}
$$

How do we encourage small weights? or penalize large weights?
$\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \operatorname{loss}\left(y y^{\prime}\right)+\lambda$ regularizer (w, b)

24

25

27

Common regularizers

sum of the weights
sum of the squared weights

$$
\begin{aligned}
& r(w, b)=\sum_{w_{j}}\left|w_{j}\right| \\
& r(w, b)=\sqrt{\sum_{w_{j}}\left|w_{j}\right|^{2}}
\end{aligned}
$$

Squared weights penalizes large values more Sum of weights will penalize small values more

26

28

29

31

Model-based machine learning

1. pick a model

$$
0=b+\sum_{j=1}^{n} w_{j} f_{j}
$$

2. pick a criteria to optimize (aka objective function)

$$
\sum_{i=1}^{n} \operatorname{loss}\left(y y^{\prime}\right)+\lambda \text { regularizer }(w)
$$

3. develop a learning algorithm

$$
\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \operatorname{loss}\left(y y^{\prime}\right)+\lambda \text { regularizer }(w) \quad \begin{aligned}
& \text { Find } w \text { and } b \\
& \text { that minimize }
\end{aligned}
$$

30

32

Adding convex functions

Claim: If f and g are convex functions then so is the function $\mathrm{z}=f+\mathrm{g}$

Prove:

$$
z\left(t x_{1}+(1-t) x_{2}\right) \leq t z\left(x_{1}\right)+(1-t) z\left(x_{2}\right) \quad \forall 0<t<1
$$

Mathematically, f is convex if for all x_{1}, x_{2} :

$$
f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right) \quad \forall 0<t<1
$$

33

Adding convex functions

By definition of the sum of two functions:

$$
z\left(t x_{1}+(1-t) x_{2}\right)=f\left(t x_{1}+(1-t) x_{2}\right)+g\left(t x_{1}+(1-t) x_{2}\right)
$$

$$
t z\left(x_{1}\right)+(1-t) z\left(x_{2}\right)=t f\left(x_{1}\right)+\operatorname{tg}\left(x_{1}\right)+(1-t) f\left(x_{2}\right)+(1-t) g\left(x_{2}\right)
$$

$$
=t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)+\operatorname{tg}\left(x_{1}\right)+(1-t) g\left(x_{2}\right)
$$

Then, given that:

$$
\begin{aligned}
& f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right) \\
& g\left(t x_{1}+(1-t) x_{2}\right) \leq \operatorname{tg}\left(x_{1}\right)+(1-t) g\left(x_{2}\right)
\end{aligned}
$$

We know:
$f\left(t x_{1}+(1-t) x_{2}\right)+g\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)+t g\left(x_{1}\right)+(1-t) g\left(x_{2}\right)$
So: $\quad z\left(t x_{1}+(1-t) x_{2}\right) \leq t z\left(x_{1}\right)+(1-t) z\left(x_{2}\right)$

Adding convex functions

By definition of the sum of two functions:
$z\left(t x_{1}+(1-t) x_{2}\right)=f\left(t x_{1}+(1-t) x_{2}\right)+g\left(t x_{1}+(1-t) x_{2}\right)$
$t z\left(x_{1}\right)+(1-t) z\left(x_{2}\right)=t f\left(x_{1}\right)+t g\left(x_{1}\right)+(1-t) f\left(x_{2}\right)+(1-t) g\left(x_{2}\right)$
$=t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)+t g\left(x_{1}\right)+(1-t) g\left(x_{2}\right)$
Then, given that:

$$
\begin{aligned}
& f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right) \\
& g\left(t x_{1}+(1-t) x_{2}\right) \leq t g\left(x_{1}\right)+(1-t) g\left(x_{2}\right)
\end{aligned}
$$

34

Minimizing with a regularizer

We know how to solve convex minimization problems using gradient descent:

$$
\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \operatorname{loss}\left(y y^{\prime}\right)
$$

If we can ensure that the loss + regularizer is convex then we could still use gradient descent:

$$
\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \operatorname{loss}\left(y y^{\prime}\right)+\lambda \text { regularizer }(w)
$$

convex as long as both loss and regularizer are convex

36

37

Our optimization criterion

$\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)+\frac{\lambda}{2}\|w\|^{2}$

Loss function: penalizes examples where the prediction is different than the label

Model-based machine learning

1. pick a model

$$
0=b+\sum_{j=1}^{n} w_{j} f_{j}
$$

2. pick a criteria to optimize (aka objective function)

$$
\sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)+\frac{\lambda}{2}\|w\|^{2}
$$

develop a learning algorithm

$$
\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)+\frac{\lambda}{2}\|w\|^{2} \quad \begin{aligned}
& \text { Find } w \text { and } b \\
& \text { that minimize }
\end{aligned}
$$

38

Gradient descent
\square pick a starting point (w) \square repeat until loss doesn't decrease in any dimension: ■ pick a dimension - move a small amount in that dimension towards decreasing loss (using the derivative) $w_{j}=w_{j}-\eta \frac{d}{d w_{j}}(l o s s(w)+$ regularizer $(w, b))$
$\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)+\frac{\lambda}{2}\\|w\\|^{2}$

40

41

43

Gradient descent

\square pick a starting point (w)
\square repeat until loss doesn't decrease in any dimension:

- pick a dimension
- move a small amount in that dimension towards decreasing loss (using the derivative)
$w_{j}=w_{j}-\eta \frac{d}{d w_{j}}(\operatorname{loss}(w)+\operatorname{regularizer}(w, b))$
$w_{j}=w_{j}+\eta \sum_{i=1}^{n} y_{i} x_{i j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)-\eta \lambda w_{j}$

42

44

L1 regularization
$\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)+\\|w\\|$ $\frac{d}{d w_{j}}$ objective $=\frac{d}{d w_{j}} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)+\lambda\\|w\\|$ $=-\sum_{i=1}^{n} y_{i} x_{i j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)+\lambda \operatorname{sign}\left(w_{j}\right)$

45

47

49

Gradient descent details

repeat until convergence (or for some \# of iterations):
randomly shuffle the training data
for each training example $\left(x_{i}, y_{i}\right)$:
for each weight:
$w_{j}=w_{j}+\eta\left(y_{i} x_{i j} c-\lambda r\right)$
update the bias
(use the same weight update equations, but:
$-\mathrm{b}=\mathrm{w}_{\mathrm{i}}$

- replace x_{ij} with 1)

Putting it together

$$
w_{j}=w_{j}+\eta\left(y_{i} x_{i j} c-\lambda r\right)
$$

exponential

$$
c=\exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)
$$

$$
{ }^{\mathrm{L1}} \quad r=\operatorname{sign}\left(w_{j}\right)
$$

hinge loss

$$
c=1\left[y y^{\prime}<1\right]
$$

$$
\mathrm{L}^{r} \quad w_{j}
$$

squared error

$$
w_{j}=w_{j}+\eta\left(y_{i}-\left(w \cdot x_{i}+b\right) x_{i j}-\lambda r\right)
$$

50

Gradient descent

\square pick a starting point (w)
\square for some number of iterations:

- for each example ($\mathbf{x i}, \mathrm{yi}$) in the training dataset
- move a small amount in that dimension towards decreasing loss (using the derivative)

$$
w_{j}=w_{j}+\eta\left(y_{i} x_{i j} c-\lambda r\right)
$$

Model-based machine learning
develop a learning algorithm
$\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)+\frac{\lambda}{2}\\|w\\|^{2} \quad$Find w and b that minimize
Is gradient descent the only way to find w and b ?
No! Many other ways to find the minimum.
Some are don't even require iteration
Whole field called convex optimization

53

$$
\begin{array}{ll}
c=\exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right) & \text { exponential } \\
c=1\left[y y^{\prime}<1\right] & \text { hinge loss }
\end{array}
$$

$$
w_{j}=w_{j}+\eta\left(y_{i}-\left(w \cdot x_{i}+b\right) x_{i j}\right) \quad \text { squared error }
$$

55

Regularizers summarized

L1 is popular because it tends to result in sparse solutions (i.e. lots of zero weights)

However, it is not differentiable, so it only works for gradient descent solvers

L2 is also popular because for some loss functions, it can be solved directly (no gradient descent required, though often iterative solvers still)

Lp is less popular since they don't tend to shrink the weights enough

54

Many tools support these different combinations

Look at scikit learning package:
http://scikit-learn.org/stable/modules/sgd.html

56

Common names

(Ordinary) Least squares: squared loss
Ridge regression: squared loss with L2 regularization
Lasso regression: squared loss with L1 regularization
Elastic regression: squared loss with L1 AND L2
regularization
Logistic regression: logistic loss

