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REGULARIZATION

David Kauchak
CS 158 – Spring 2022
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Admin

Assignment 5

Course feedback

Midterm next week
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Midterm details

Time limited take home exam (you’ll have 2 hours to complete it)

Available on Monday (2/21)

Must finish by end of the day on Friday (2/25)

You may use your notes, the class notes, the class book(s), and 
your assignments

You may NOT use any other resources on the web or search for 
things on the web
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Midterm topics

Machine learning basics
- different types of learning problems
- feature-based machine learning
- data assumptions/data generating distribution

Classification problem setup

Proper experimentation
- train/dev/test
- evaluation/accuracy/training error
- optimizing hyperparameters
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Midterm topics

Learning algorithms
- Decision trees
- K-NN
- Perceptron
- Gradient descent

Algorithm properties
- training/learning
- rational/why it works

- classifying
- hyperparameters
- avoiding overfitting
- algorithm variants/improvements
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Midterm topics

Geometric view of data
- distances between examples
- decision boundaries

Features
- example features
- removing erroneous features/picking good features
- challenges with high-dimensional data
- feature normalization

Other pre-processing
- outlier detection
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Midterm topics

Comparing algorithms
- n-fold cross validation
- leave one out validation

- bootstrap resampling
- t-test

imbalanced data
- evaluation
- precision/recall, F1, AUC

- subsampling
- oversampling
- weighted binary classifiers
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Midterm topics

Multiclass classification
- Modifying existing approaches
- Using binary classifier
- OVA
- AVA
- Tree-based

- micro- vs. macro-averaging

Ranking
- using binary classifier
- using weighted binary classifier
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Midterm topics

Gradient descent
- 0/1 loss
- Surrogate loss functions
- Convexity
- minimization algorithm
- regularization

- different regularizers
- p-norms

9

Midterm general advice

2 hours goes by fast!
- Don’t plan on looking everything up
- Lookup equations, algorithms, random details

- Make sure you understand the key concepts
- Don’t spend too much time on any one question
- Skip questions you’re stuck on and come back to them

- Watch the time as you go

Be careful on the T/F questions

For written questions
- think before you write
- make your argument/analysis clear and concise

10

How many have you heard of?

(Ordinary) Least squares

Ridge regression

Lasso regression

Elastic regression

Logistic regression
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Model-based machine learning

1. pick a model

2. pick a criteria to optimize (aka objective function)

3. develop a learning algorithm

1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑

argminw,b 1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑ Find w and b that 
minimize the 0/1 loss

0 = b+ wj f jj=1

m
∑
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Model-based machine learning

1. pick a model

2. pick a criteria to optimize (aka objective function)

3. develop a learning algorithm

exp(−yi (w ⋅ xi + b))
i=1

n

∑

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ Find w and b that 
minimize the 
surrogate loss

use a convex surrogate 
loss function

0 = b+ wj f jj=1

m
∑

13

Surrogate loss functions

l(y, y ') =1 yy ' ≤ 0[ ]0/1 loss:

Hinge: l(y, y ') =max(0,1− yy ')

Exponential: l(y, y ') = exp(−yy ')

Squared loss: l(y, y ') = (y− y ')2

14

Finding the minimum

You’re blindfolded, but you can see out of the bottom of the 
blindfold to the ground right by your feet.  I drop you off 
somewhere and tell you that you’re in a convex shaped valley 
and escape is at the bottom/minimum.  How do you get out?
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Gradient descent

¤ pick a starting point (w)
¤ repeat until loss doesn’t decrease in any dimension:

n pick a dimension
n move a small amount in that dimension towards decreasing loss (using 

the derivative)

wj = wj −η
d
dwj

loss(w)

16
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Perceptron learning algorithm!

repeat until convergence (or for some # of iterations):

for each training example (f1, f2, …, fm, label):

if prediction * label ≤ 0:  // they don’t agree

for each wj:
wj = wj + fj*label

b = b + label

prediction = b+ wj f jj=1

m
∑

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))

wj = wj + xij yic
or

where c =η exp(−yi (w ⋅ xi + b))

Note: for gradient descent, we always update
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The constant

c =η exp(−yi (w ⋅ xi + b))

When is this large/small?

predictionlabellearning rate
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The constant

c =η exp(−yi (w ⋅ xi + b))

predictionlabel

If they’re the same sign, as the 
predicted gets larger there update 
gets smaller

If they’re different, the more 
different they are, the bigger the 
update

19

One concern

w

loss

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑

We’re calculating this on the training set

We still need to be careful about 
overfitting!

The min w,b on the training set is 
generally NOT the min for the test set

How did we deal with this for the perceptron algorithm?
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Overfitting revisited: regularization

A regularizer is an additional criterion to the loss function 
to make sure that we don’t overfit

It’s called a regularizer since it tries to keep the 
parameters more normal/regular

It is a bias on the model that forces the learning to prefer 
certain types of weights over others

argminw,b loss(yy ')+λ  regularizer(w,b)
i=1

n

∑

21

Regularizers

0 = b+ wj f jj=1

n
∑

Should we allow all possible weights?

Any preferences?

What makes for a “simpler” model for a 
linear model?

22

Regularizers

Generally, we don’t want huge weights

If weights are large, a small change in a feature can result in a 
large change in the prediction

Also gives too much weight to any one feature

Might also prefer weights of 0 for features that aren’t useful

0 = b+ wj f jj=1

n
∑

23

Regularizers

How do we encourage small weights? or penalize large weights?

argminw,b loss(yy ')+λ  regularizer(w,b)
i=1

n

∑

0 = b+ wj f jj=1

n
∑
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Common regularizers

What’s the difference between these?

r(w,b) = wj
wj

∑sum of the weights

sum of the squared weights r(w,b) = wj
2

wj

∑

25

Common regularizers

Squared weights penalizes large values more
Sum of weights will penalize small values more

sum of the weights

sum of the squared weights

r(w,b) = wj
wj

∑

r(w,b) = wj
2

wj

∑

26

p-norm

sum of the weights (1-norm)

sum of the squared weights 
(2-norm)

p-norm r(w,b) = wj
p

wj

∑p = w p

Smaller values of p (p < 2) encourage sparser vectors
Larger values of p discourage large weights more

r(w,b) = wj
wj

∑

r(w,b) = wj
2

wj

∑

27

p-norms visualized

w1

w2

lines indicate penalty = 1

For example, if w1 = 0.5

p w2

1 0.5

1.5 0.75

2 0.87

3 0.95

∞ 1

28
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p-norms visualized

all p-norms penalize larger 
weights

p < 2 tends to create sparse 
(i.e. lots of 0 weights)

p > 2 tends to like similar 
weights

29

Model-based machine learning

1. pick a model

2. pick a criteria to optimize (aka objective function)

3. develop a learning algorithm

0 = b+ wj f jj=1

n
∑

loss(yy ')
i=1

n

∑ +λregularizer(w)

argminw,b loss(yy ')
i=1

n

∑ +λregularizer(w) Find w and b 
that minimize

30

Minimizing with a regularizer

argminw,b loss(yy ')
i=1

n

∑ +λregularizer(w)

argminw,b loss(yy ')
i=1

n

∑

We know how to solve convex minimization problems using 
gradient descent:

If we can ensure that the loss + regularizer is convex then we 
could still use gradient descent:

make convex

31

Convexity revisited

One definition: The line segment between any 
two points on the function is above the function

Mathematically, f is convex if for all x1, x2:

f (tx1 + (1− t)x2 ) ≤ tf (x1)+ (1− t) f (x2 )   ∀ 0 < t <1

the value of the function 
at some point between 
x1 and x2

the value at some point 
on the line segment 
between  x1 and x2

32
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Adding convex functions

Claim: If f and g are convex functions then so is the 
function z=f+g

f (tx1 + (1− t)x2 ) ≤ tf (x1)+ (1− t) f (x2 )   ∀ 0 < t <1
Mathematically, f is convex if for all x1, x2:

Prove:

z(tx1 + (1− t)x2 ) ≤ tz(x1)+ (1− t)z(x2 )   ∀ 0 < t <1

33

Adding convex functions

z(tx1 + (1− t)x2 ) = f (tx1 + (1− t)x2 )+ g(tx1 + (1− t)x2 )

tz(x1)+ (1− t)z(x2 ) = tf (x1)+ tg(x1)+ (1− t) f (x2 )+ (1− t)g(x2 )
= tf (x1)+ (1− t) f (x2 )+ tg(x1)+ (1− t)g(x2 )

f (tx1 + (1− t)x2 ) ≤ tf (x1)+ (1− t) f (x2 )
g(tx1 + (1− t)x2 ) ≤ tg(x1)+ (1− t)g(x2 )

Then, given that:

By definition of the sum of two functions:

34

Adding convex functions

z(tx1 + (1− t)x2 ) = f (tx1 + (1− t)x2 )+ g(tx1 + (1− t)x2 )

tz(x1)+ (1− t)z(x2 ) = tf (x1)+ tg(x1)+ (1− t) f (x2 )+ (1− t)g(x2 )
= tf (x1)+ (1− t) f (x2 )+ tg(x1)+ (1− t)g(x2 )

f (tx1 + (1− t)x2 ) ≤ tf (x1)+ (1− t) f (x2 )
g(tx1 + (1− t)x2 ) ≤ tg(x1)+ (1− t)g(x2 )

Then, given that:

By definition of the sum of two functions:

We know:

f (tx1 + (1− t)x2 )+ g(tx1 + (1− t)x2 ) ≤ tf (x1)+ (1− t) f (x2 )+ tg(x1)+ (1− t)g(x2 )

z(tx1 + (1− t)x2 ) ≤ tz(x1)+ (1− t)z(x2 )So:

35

Minimizing with a regularizer

argminw,b loss(yy ')
i=1

n

∑ +λregularizer(w)

argminw,b loss(yy ')
i=1

n

∑

We know how to solve convex minimization problems using 
gradient descent:

If we can ensure that the loss + regularizer is convex then we 
could still use gradient descent:

convex as long as both loss and regularizer are convex

36
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p-norms are convex

r(w,b) = wj
p

wj

∑p = w p

p-norms are convex for p >= 1

37

Model-based machine learning

1. pick a model

2. pick a criteria to optimize (aka objective function)

3. develop a learning algorithm

0 = b+ wj f jj=1

n
∑

exp(−yi (w ⋅ xi + b))
i=1

n

∑ +
λ
2
w 2

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ +
λ
2
w 2 Find w and b 

that minimize

38

Our optimization criterion

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ +
λ
2
w 2

Loss function: penalizes 
examples where the prediction 
is different than the label

Regularizer: penalizes large 
weights

Key: this function is convex allowing us to use gradient descent

39

Gradient descent

¤ pick a starting point (w)
¤ repeat until loss doesn’t decrease in any dimension:

n pick a dimension
n move a small amount in that dimension towards decreasing loss (using 

the derivative)

wj = wj −η
d
dwj

(loss(w)+ regularizer(w,b))

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ +
λ
2
w 2

40
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Some more maths

d
dwj

exp(−yi (w ⋅ xi + b))
i=1

n

∑ +
λ
2
w 2d

dwj

objective =

= − yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑ +λwj

…

(some math happens)

41

Gradient descent

¤ pick a starting point (w)
¤ repeat until loss doesn’t decrease in any dimension:

n pick a dimension
n move a small amount in that dimension towards decreasing loss (using 

the derivative)

wj = wj +η yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑ −ηλwj

wj = wj −η
d
dwj

(loss(w)+ regularizer(w,b))
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The update

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))−ηλwj

regularizationdirection to 
update

learning rate

constant: how far from wrong

What effect does the regularizer have?

43

The update

If wj is positive, reduces wj
If wj is negative, increases wj

moves wj towards 0

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))−ηλwj

regularizationdirection to 
update

learning rate

constant: how far from wrong

44
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L1 regularization

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ + w

d
dwj

exp(−yi (w ⋅ xi + b))
i=1

n

∑ +λ wd
dwj

objective =

= − yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑ +λsign(wj )

45

L1 regularization

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))−ηλsign(wj )

regularizationdirection to 
update

learning rate

constant: how far from wrong

What effect does the regularizer have?

46

L1 regularization

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))−ηλsign(wj )

regularizationdirection to 
update

learning rate

constant: how far from wrong

If wj is positive, reduces by a constant
If wj is negative, increases by a constant

moves wj towards 0
regardless of  magnitude

47

Gradient descent

¤ pick a starting point (w)
¤ repeat until loss doesn’t decrease in any dimension:

n pick a dimension
n move a small amount in that dimension towards decreasing loss (using 

the derivative)

wj = wj −η
d
dwj

(loss(w)+ regularizer(w,b))

48
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Regularization with p-norms

L1:

L2:

Lp:

wj = wj +η(loss_ correction−λsign(wj ))

wj = wj +η(loss_ correction−λwj )

wj = wj +η(loss_ correction−λcwj
p−1)

How do higher order norms affect the weights?

49

Putting it together

c = exp(−yi (w ⋅ xi + b))

c =1[yy ' <1]

exponential

hinge loss

squared error

𝑤𝑗 = 𝑤𝑗 + η(𝑦𝑖𝑥𝑖𝑗𝑐 − 𝜆𝑟)

𝑟 = 𝑠𝑖𝑔𝑛(𝑤𝑗)

𝑟 = 𝑤𝑗

L1

L2

𝑤𝑗 = 𝑤𝑗 + η(𝑦𝑖 − 𝑤 - 𝑥𝑖 + 𝑏 𝑥𝑖𝑗 − 𝜆𝑟)
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Gradient descent details

repeat until convergence (or for some # of iterations):
randomly shuffle the training data

for each training example (xi,yi):

for each weight:

update the bias 
(use the same weight update equations, but:

- b = wj
- replace xij with 1) 

𝑤𝑗 = 𝑤𝑗 + η(𝑦𝑖𝑥𝑖𝑗𝑐 − 𝜆𝑟)
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Gradient descent

¤ pick a starting point (w)
¤ for some number of iterations:

n for each example (xi, yi) in the training dataset
n move a small amount in that dimension towards decreasing loss (using 

the derivative)

𝑤𝑗 = 𝑤𝑗 + η(𝑦𝑖𝑥𝑖𝑗𝑐 − 𝜆𝑟)

52
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Model-based machine learning

develop a learning algorithm

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ +
λ
2
w 2 Find w and b 

that minimize

Is gradient descent the only way to find w and b?

No!  Many other ways to find the minimum.

Some are don’t even require iteration

Whole field called convex optimization

53

Regularizers summarized

L1 is popular because it tends to result in sparse solutions 
(i.e. lots of zero weights)

However, it is not differentiable, so it only works for gradient 
descent solvers

L2 is also popular because for some loss functions, it can 
be solved directly (no gradient descent required, though 
often iterative solvers still)

Lp is less popular since they don’t tend to shrink the 
weights enough

54

The other loss functions

wj = wj +ηyixijc
Without regularization, the generic update is:

where

c = exp(−yi (w ⋅ xi + b))

c =1[yy ' <1]

exponential

hinge loss

squared errorwj = wj +η(yi − (w ⋅ xi + b)xij )

55

Many tools support these different combinations

Look at scikit learning package:

http://scikit-learn.org/stable/modules/sgd.html

56

http://scikit-learn.org/stable/modules/sgd.html
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Common names

(Ordinary) Least squares: squared loss

Ridge regression: squared loss with L2 regularization

Lasso regression: squared loss with L1 regularization

Elastic regression: squared loss with L1 AND L2 
regularization

Logistic regression: logistic loss
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