
CS158 - Assignment 6

A Gradient Descent Into Madness
Due: Tuesday, March 1st by 11:59pm

For this assignment we’re going to try out a few gradient descent variants (including SVM). The
amount of co de you’ll need to write for this will be pretty minimal.

1 High-level requirements

• Implement the gradient descent algorithm

• Your approach will need to support two loss functions: hinge loss and exponential loss

• Your approach will need to support three regularization type: none, L1 and L2

• You will provide a short writeup that includes:

– an argument that your implementation is correct. This can be of the form of examining
text snippets with justification and/or showing experimental results.

– at least one experimental result

2 Implementation Requirements

To get you started I have included some starter code at:

http://www.cs.pomona.edu/classes/cs158/assignments/assign6/assign6-starter.zip

1



This is more or less the same starter code as assignment 5 except I have add the KNNClassifier

(so that everything compiles) and I have included a starter class GradientDescentClassifier.
This file is a copy of the PerceptronClassifier file with the addition of a few constants. This
should serve as your starting point.

Implement a gradient descent classifier. Your implementation must:

- support a zero parameter constructor. By default you should use exponential loss, no regu-
larization, λ = 0.01 and η = 0.01

- include a method setLoss that takes an int and selects the loss function to use (based on
the constants)

- include a method setRegularization that takes an int and selects the regularization method
to use (based on the constants)

- include a method setLambda that takes a double and sets the λ to use

- include a method setEta that takes a double and sets the η to use (Note, in practice we’d
use some sort of schedule of etas, e.g. one for each iteration, however, to keep it simple we’ll
just have a constant learning rate.)

- the model weights and bias should all start out at 0.0.

- update the model weights (both wi and b) after every example. There are two common ways
for implementing gradient descent:

1. For each iteration, iterate over all the examples and aggregate the sum of the adjustments
and then adjust the weights based on this. This results in adjusting each of the weights
of the model once per iteration over the entire data.

2. Or, for each iteration, for each example, calculate the adjustment to the weights and
then immediately adjust the model weights before moving to the next example.

Both are correct and are gradient descent approaches in that they will make steps towards
lower gradient. We’re going to implement option 2 for this assignment. In practice, it works
better to update every example, particularly for larger data sets. The trajectory is a bit
noisier since it’s only based on a single example, however, the advantage is that you take into
account changes in the weights immediately into the model for future gradient calculations.

3 Writeup

In addition to your code, include a writeup (in some reasonable file format) that includes two
sections: Algorithm Correctness and Experimentation. Because of the small amount of
coding required for this assignment, the writeup will be a non-trivial part of your grade, so make
sure to devote sufficient time to this.

2



Algorithm Correctness

One of the challenges with implementing machine learning algorithms, particularly iterative ap-
proaches like this, is determining if they are operating correctly. Include a short (∼1 page), concrete
justification of why your implementation of the hinge loss with L2 regularization is correct. Your
argument must include two arguments:

1. Create a small example dataset (e.g., two examples and two features) and work through an
iteration or two by hand (or using excel or something like that). Add print statements to
your code to show that your code gets the same calculations. Include this comparison in your
writeup in a way that helps argue for the correctness of your approach.

2. Include another type of argument for the correctness of your code, e.g., could include snippets
of code, along with an explanation.

You will be graded based on how convincing and thorough your argument is.

Experimentation

3. For hinge loss with no regularization and the default parameters, plot the loss function
summed over all of the training examples with respect to the iterations, i.e., one value for each
iteration. Do do this, you’ll need to write a helper method inside your GradientDescentClassifier
class that calculates the loss.

4. Repeat this experiment and plot the loss using hinge loss with L2 regularization. Write a 2-3
sentences discussing these two experiments.

5. Run one additional experiment that highlights something interesting about the algorithm,
include the resulting data, and include a few sentences of explanation/analysis. For example,
you could investigate the optimal λ/η for one of the variants on one of the data sets, or you
could investigate how the different loss/regularization approaches work (though pick some
reasonable lambda). Plan on spending around an hour playing around with this. You will be
graded based on the quality of your experimental setup and your presentation.

4 Hints/observations

• Tuning the hyperparameters (i.e. λ and η) is extremely important for gradient descent to get
the algorithms to work well.

• Some hyperparameter choices can cause the algorithm to diverge (rather than converge) and
will result in weights going to infinity (particularly with the exponential loss).

• Think about how you’re going to tune the parameters. When you have multiple hyperparam-
eters the space of possible parameters goes up drastically since you have to consider possible
combinations of both. There are many ways to do this (be creative), but as before, definitely
do it programmatically.

3



• Exponential loss is very hard to tune for as the accuracy tends to jump around a lot. Start
with the hinge loss first and then start at similar values for the exponential loss.

• You can use whatever dataset you’d like, however, datasets with a large number of features
(and, therefore, a larger number of weights and higher dimensionality), and particularly sparse
datasets (like our wine dataset), are going to be harder/slower to train for iterative methods
like gradient descent. If you use the Titanic data set, either use the binary version or make
sure to use feature normalization.

• Don’t forget that b is also a parameter of the model and needs to be updated each time. One
way that is helpful to think about b is to think of it like any of the other weights that happens
to be associated with a feature whose value is always 1. You should update it whenever and
in the same way as the other weights.

• In most places in the gradient descent notes y′ is shorthand for wx+b, not for the classification
prediction (i.e. +1 or -1). If you look at the loss functions, they do want to take into account
not only the classification prediction, but also how far away from the hyperplane the prediction
is.

5 Extra Credit

For those who would like to experiment (and push themselves) a bit more (and of course, get a bit
of extra credit) you can try out some of these extra credit options. If you try out these options,
include an extra file called extra.txt that describes what extra credit you did.

• Allow for an η schedule rather than just a single constant. I’ll let you be creative about the
best way to do this, but please just create a new copy of your classifier code rather than
trying to alter the existing code.

• Add additional regularization or loss functions. If you do this, add appropriate constants for
selecting these.

• Do additional experimentation and include it in the write-up. The amount earned will be
based on how much effort you put in and how creative the experiment is.

6 When You’re Done

Make sure that your code compiles, that your files are named as specified and that you have followed
the specifications exactly (i.e. method names, number of parameters, etc.).

Create a directory with your last name, followed by the assignment number, for example, for this
assignment mine would be kauchak6. If you worked with a partner, put both last names.

Inside this directory, create a code directory and copy all of your code into this directory, main-
taining the package structure.

4



Finally, also include your writeup file.

zip this folder and submit that file.

Commenting and code style

Your code should be commented appropriately (though you don’t need to go overboard). The most
important things:

• Your name (or names) and the assignment number should be at the top of each file

• Each class and method should have an appropriate JavaDoc

• If anything is complicated, it should include some comments.

There are many possible ways to approach this problem, which makes code style and comments
very important here so that I can understand what you did. For this reason, you will lose points
for poorly commented or poorly organized code.

5


