
CS158 - Assignment 4

k-NN and Feature Preprocessing
Due: Sunday, February 13 by 11:59pm

https://www.smbc-comics.com/comic/2008-06-08

For this assignment, we’re going to add a third classifier to our arsenal (k-NN) and also implement
a few feature preprocessing techniques so that we can start to play with some more interesting data
sets, in particular, data sets that use real/continuous features!

As always, make sure to read through the entire handout before starting. You may (and I would
strongly encourage you to) work with a partner on this assignment. If you do, you must both be
there whenever you are working on the project. If you’d like a partner for the lab, e-mail me asap
and I can try and pair people up.

High-level Requirements

For this assignment, you are going to be implementing three main things:

• the k-nearest neighbor (k-NN) classifier

• feature normalization (mean centering and variance scaling)

1



• example length normalization

Like the previous assignments, we’re also going to then run a few experiments on these and, now
that we can do statistical tests, we can be more confident with our comparisons :)

Starter

The starter can be found at:

http://www.cs.pomona.edu/classes/cs158/assignments/assign4/assign4-starter.zip

Code

The starter code includes some new classes/interfaces and some changes to some previous ones:

- Added PerceptronClassifier and AveragePerceptronClassifier classes. These will NOT
be included in the starter code if you try and download it before Tuesday since people are
still working on the last assignment. On Tuesday, I will update the starter code to include
these.

You are welcome to use your own if you’d like, but I’m providing these for those of you who
weren’t that comfortable with your versions :)

- I have created a new package ml.data and moved all of the data processing classes in there.

- Added DataPreprocessor interface. This defines the interface for any of our data prepro-
cessing approaches.

- Added CrossValidationSet class. This class is generated from a DataSet by calling
getCrossValidationSet. The class represents an n-fold splitting of the data, as talked about
in class. By asking for each split, you can calculate cross validation scores.

- Added DataSetSplit to represent a train/test split of the data. This replaces the old (read,
bad) way of doing it where we (I) represented a train/test split by an array of DataSet.

- DataSet has been updated to include this new split behavior, the new cross validation func-
tionality, a new constructor, addData methods for adding additional data to a data set (useful
with new constructor), and a few other minor changes.

- Example class has been updated to include a setFeature function that will allow you to
update the value of a feature.

To make life a little easier (and to show you how useful docstrings are) I’ve generated the html
documentation from the starter code and made it available at:

http://www.cs.pomona.edu/classes/cs158/assignments/assign4/doc/

2



Data

I have included one new data set: titanic-train.real.csv. This is almost the real data set made
available on kaggle. This data set includes the same examples as our current dataset, but includes
two additional features and there are now non-binary features.

k-NN Classifier

To round out our classification approaches, implement the k-NN classifier. In particular:

• Implement a class called KNNClassifier that implements the Classifier interface. The
train method should be very easy. For the distance measure, use euclidean distance.

• The class should have a zero parameter constructor and by default k should be 3.

• The class should include a setK method that allows you to update the k value.

Data Pre-processing

So far, we’ve only been playing with boolean features. Generally, as long as there aren’t too many of
them, boolean features don’t require a lot of pre-processing. Right now, the perceptron and k-NN
classifiers will both work on real-valued features, however, if you run them on the real-valued data
set, you’ll notice that their performance is pretty bad. The problem is that we need to normalize
the feature values.

Implement the following:

• A class called ExampleNormalizer that implements the DataPreprocessor interface. This
class should normalize each example so that its length is 1.

• A class called FeatureNormalizer that implements the DataPreprocessor interface. For
each feature (e.g., age) this class should:

– recenter all of the feature values for that one feature so that the mean is 0 and then

– rescale all of the features values for that one feature so that the standard deviation is 1

In the notes, this is referred to as “centering” and “variance scaling”.

Experiments

Answer the following questions and put them in a file called experiments (pick some reasonable
file type). Put your name(s) at the top of the file and explicitly label each answer with the question
number.

3



1. Calculate the performance of the perceptron classifier on the 10-fold cross validation of the
data (i.e. you should have 10 numbers) with the AveragePerceptronClassifier on the old
binary data, i.e. “titanic-train.csv”. Use a reasonable number of iterations based on your
experience from last assignment or from a small experiment.

Also include the average of the 10 folds.

Because the perceptron algorithm involves randomness (i.e. because it shuffles the examples
each round), to do this properly:

– Generate a 10-fold cross validation. Only do this once for this experiment (i.e. don’t
keep repeatedly creating new 10-fold cross validations).

– On each of the splits of the data, run the perceptron 100 times and average those results
to get a single value for that split.

– Repeat this for each of the 10 splits.

For any of the experiments below for the perceptron classifiers, make sure to follow this
procedure to get consistent results.

2. Calculate the accuracy on the 10 folds on the new non-binary data, i.e. “titanic-train.real.csv”.
You should notice a pretty big difference here. Why do you think there is such a big difference?
(You don’t have to write your answer.)

3. Repeat experiments 1 and 2 for your new k-NN classifier.

4. Now, generate a table of scores with the individual 10-fold scores and the 10-fold average on
the following algorithm variants:

• k-NN with length normalization

• k-NN with feature normalization

• k-NN with length and feature normalization

• perceptron with length normalization

• perceptron with feature normalization

• perceptron with length and feature normalization

This should be a table with 66 numbers!

5. Pick a few (say 4-5) of these results (including the earlier results) and calculate their t-test
score to figure out if the differences are significant. Pick a couple of the experimental results
that are close and a couple where they’re further apart.

I’d suggest just using Excel/Google Docs/Open Office to calculate these, though you can use
whatever you’d like. If you use these the ttest function is what you want to use. The first
two parameters are the two data sets, the third parameter (tails) should be 2 , and the fourth
parameter (type) should be 1 (paired t-test).

List the comparisons that you made and their t-test p values.

6. Write a short (3-4 sentence) paragraph summarizing your results.

4



Hints/Advice

http://www.xkcd.com/1263/

• For the k-NN classifier the hardest part is not calculating the distance, but finding the k
closest. The challenge is keeping track of both the distance to an example AND the example
itself so that when you sort the data based on distance, you can recover the examples too. My
suggestion is to make a helper class that stores an Example along with the distance from that
example to the example you’re trying to classify. This class should implement the Comparable
interface. The comparison can then just compare the distances. This will allow you to use
built-in sorting or even built in priority queues to pick the k closest. There are other ways of
doing this, of course.

• For the two feature pre-processing techniques think about what information, if any, you need
to store from train preprocessing to use during test preprocessing. For feature normaliza-
tion, all examples (train and test) should be normalized using the same mean and standard
deviation.

• For the feature normalization, make sure to do recentering before you do variance scaling.

• For feature normalization you don’t need to create a new data set or new examples. Mutate
(i.e. change) the existing examples using the setFeature method.

• The CrossValidationSet.getValidationSet method has a second parameter, copyData,
which indicates whether the DataSetSplit returned shares the underlying Examples with
the original data or is a new copy. If you are not mutating the data during evaluation, then
you can just set copyData to false. However, if you are mutating the Examples (e.g. feature
preprocessing) then my advice is to set copyData to true and get a fresh copy each time.
For these feature preprocessing approaches it generally won’t change the results either way,
but can be a bit confusing if you’re trying to debug.

5



Extra Credit

For those who would like to experiment (and push themselves) a bit more (and of course, get a bit
of extra credit) you can try out some of these extra credit options. If you try out these options,
include an extra file called extra.txt that describes what extra credit you did.

• The easiest way to implement k-NN is to calculate all of the distances, sort them and then
take the k smallest. A better way is to only keep track of the k smallest as you go with
something like a priority queue. This saves on memory and in many situations also the run-
time. Implement your k-NN classifier this way. What is the big-O runtime for sorting vs.
priority queue as implemented above?

• Add another feature normalizer. One option would be to do max value scaling, rather than
variance scaling. If you go this route, also include some experimentation.

When You’re Done

Make sure that your code compiles, that your files are named as specified and that you have followed
the specifications exactly (i.e. method names, number of parameters, etc.).

Create a directory with your last name, followed by the assignment number, for example, for this
assignment mine would be kauchak4. If you worked with a partner, put both last names.

Inside this directory, create a code directory and copy all of your code into this directory, main-
taining the package structure.

Finally, also include your experiments file with the answers from Section .

zip this folder and submit that file.

Commenting and code style

Your code should be commented appropriately (though you don’t need to go overboard). The most
important things:

• Your name (or names) and the assignment number should be at the top of each file

• Each class and method should have an appropriate doctsring

• If anything is complicated, it should include some comments.

There are many possible ways to approach this problem, which makes code style and comments
very important here so that I can understand what you did. For this reason, you will lose points
for poorly commented or poorly organized code.

6



http://www.entrepreneursolo.com/entrepreneur-thoughts/more-on-procrastination-is-there-an-app-for-that

7


