Activations, Problematic Gradients, Initialization, and Normalization
SpeakUp

Join by URL: https://web.speakup.info/room/join/80740

Join by key: web.speakup.info ➔ use key 80740

Join by saved session: web.speakup.info

Join by QR:
Outline

• Activations (output of an activation function)

• Problematic gradients (exploding and vanishing)

• The benefits of depth in neural networks

• Proper parameter initialization

• Normalization (preprocessing) of inputs and activations (a type of layer)
Recap: Optimization Techniques

• Take five minutes to draw
Purpose of Assignments

I provide most (if not all code) on assignments for 2 reasons:

1. This provides a nice set of working examples you can use for projects

2. It keeps assignments shorter so that you have more time for projects

You should end up spending more time reading my code and more time writing your own code.
With Activation Functions

\[A[1] = \sigma(Z[1]) \]
\[A[2] = \sigma(Z[2]) \]

Without Activation Functions

What is the relationship between input and output?
No Activation function

With Non Linear Activations
Sigmoid and ReLU Activation Functions

Sigmoid

\[\sigma(z) = \frac{1}{1 + e^{-z}} \]

\[\sigma'(z) = \sigma(z)(1 - \sigma(z)) \]

ReLU

\[\text{ReLU}(z) = \max(0, z) \]

(1) Non-linear
(2) "Interesting" around \(z = 0 \)
Problematic Gradients, Three-Layer Network

\[
\frac{\partial L}{\partial W^{[1]}} = (A^{[3]} - Y)A^{[3]}(1 - A^{[3]})W^{[3]}A^{[2]}(1 - A^{[2]})W^{[2]}A^{[1]}(1 - A^{[1]})X
\]

Exploding

\[W^{[1]} := W^{[1]} - \eta \frac{\partial L}{\partial W^{[1]}}\]

Vanishing

Within ½ MSE and Sigmoids

\[\langle -0.001, 0.001 \rangle \Rightarrow \text{smaller} \& \text{smaller gradients}\]
Fixes for Problematic Gradients

• Shallower networks
 → Worse results

• Gradient clipping
 → We can do better

• Clever initialization
 → Easy and very effective

• Batch normalization
 → Works well for many problems (doesn’t for others)

• Better activation functions
 → Small improvements

• Residual connections
 → Come back to this later
Depth vs Width

lines
edges
corners
circles
cat fur
dog snout
Proper Initialization

- Activation functions produce “useful” output around 0.
- \(Z^{[1]} = A^{[0]} W^{[1]T} + b^{[1]} \)
- \(A^{[1]} = \sigma(Z^{[1]}) \)
PyTorch Kaiming He Initialization

\[W = \text{torch.randn}(n_0, n_1) \cdot 0.01 \]

torch.nn.init.kaiming_uniform_(tensor, a=0, mode='fan_in',
nonlinearity='leaky_relu') [SOURCE]

Fills the input Tensor with values according to the method described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015), using a uniform distribution. The resulting tensor will have values sampled from \(U(-\text{bound}, \text{bound}) \) where

\[
\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan_mode}}}
\]

gain = calculate_gain(nonlinearity, a)
std = gain / math.sqrt(fan)
bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
with torch.no_grad():
 return tensor.uniform_(-bound, bound)
Batch Normalization

• What is normalization?
 • Adjusting values to a different (common) scale.
 • For example, the standard-score normalization: \(\overline{x} = \frac{x - \mu}{\sigma} \)

• Normalize with respect to what?
Batch Normalization

\[\text{Batch Size} \]

\[\begin{bmatrix} 0 & 1 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \]
Summary

• Activation functions behave nicely with inputs around zero

• Gradients behave nicely with values around zero (but not too small)

• Depth is good for extracting/finding complex features

• You should
 • Normalize input features
 • Initialize parameters properly
 • Prefer deeper over wider networks
 • Try/consider batch normalization