
Recurrent Neural Networks



Outline

• Recap convolutional neural networks

• Compare conventional and recurrent neural networks (RNNs)

• Text translation example

• Backpropagation through time

• Code comparison

• Parts-of-speech example

• RNN paradigms

• LSTMs

• A mention of attention
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Recap: Convolutional Neural Networks

• Take five minutes to draw
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Image Dataset

• We need an image dataset for next week’s lecture on inference/deploying.

• I want you all to take photos of whatever we’re classifying.

• From previous semesters
• Frank or Frary

• Pine or Palm

• Spoon or Fork

• Cup or Bowl

• Salt or Sugar
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Conventional Neural Networks (including CNNs)

• Input: fixed sized tensor
• Though the batch size can be any value due to broadcasting

• Output: fixed sized tensor
• Though the batch size can be any value due to broadcasting

• Functionally deterministic (always produce the same output for a given input)
• When might you want different outputs on the same input?
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Motivating Example: Text Translation

• Input: I love purple cats. Cats are neat.

• Output: J'adore les chats violets. Les chats sont soignés.
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Recurrent Neural Networks

Operate over sequences (data with temporal dependencies).
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Linear vs (Elman) Recurrent Neurons

• Input shape:

• Output shape:

• Input shape:

• Output shape:
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class Neuron(torch.Module):

  def __init__(self, input_size, output_size):

    self.W = torch.randn(output_size, input_size) * 0.01

    self.b = torch.randn(output_size, 1) * 0.01

  def forward(self, X):

    linear = X @ self.W.T + self.b.T

    return F.sigmoid(linear)

*Untested code.

class RecurrentNeuron():

  def __init__(self, input_size, output_size):

    self.Wx = torch.randn(output_size, input_size) * 0.01

    self.Wh = torch.randn(output_size, output_size) * 0.01

    self.bh = torch.zeros(output_size, 1)

    self.output_size = output_size

  def forward(self, X, state=None):

    L, N, input_size = X.shape

    if not state:

      state = torch.zeros(N, self.output_size)

    output_sequence = []

    for x_t in X:

      state = F.tanh(x_t @ self.Wx + state @ self.Wh + self.bh)

      output_sequence.append(state)

    return torch.tensor(output_sequence), state



Unrolled Visualization
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Motivating Example: Text Translation

• Input: I love purple cats. Cats are neat.

• Output: J'adore les chats violets. Les chats sont soignés.
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Backpropgation Through Time (BPTT)
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Backpropgation Through Time (BPTT)
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Some BPTT Math
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RNN Paradigm: One to One (RNN unneeded)
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No need for recurrent connections.



RNN Paradigm: One to Many
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RNN Paradigm: Many to One
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RNN Paradigm: Many to Many (Synced)
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RNN Paradigm: Many to Many (Encoder/Decoder)
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Parts-Of-Speech Example
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You all must submit sentences for the dataset.

"I is a teeth"

How do we pass this into a neural network?

https://docs.google.com/spreadsheets/d/1HJmlehaYhGWclDo1t0k6i1VHxN15zr8ZmJj7Rf_VEaI/edit#gid=1031300490 

https://docs.google.com/spreadsheets/d/1HJmlehaYhGWclDo1t0k6i1VHxN15zr8ZmJj7Rf_VEaI/edit


Processing Natural Language with an NN

Here’s one way to convert text into numbers

1. Assign every word a unique number (e.g., 1 .. vocab_size)

2. Assign every part-of-speech a unique number (e.g., 1 .. num_classes)

3. Convert sentences into index tensors (using mapping from step 1)

4. Pass index tensors into an embedding layer (i.e., a simple lookup table)

5. Pass embedding outputs into the recurrent neural network (RNN)

6. Pass the RNN output into a fully-connected (FC) classification network

7. Convert the FC output into a part-of-speech (one-hot)
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https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
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class POS_LSTM(torch.nn.Module):

  """Parts-of-speech LSTM model."""

  def __init__(self, vocab_size, embed_dim, hidden_dim, num_layers, parts_size):

    super().__init__()

    self.embed = torch.nn.Embedding(vocab_size, embed_dim)

    self.lstm = torch.nn.LSTM(embed_dim, hidden_dim, num_layers=num_layers)

    self.linear = torch.nn.Linear(hidden_dim, parts_size)

  def forward(self, X):

    X = self.embed(X)

    X, _ = self.lstm(X.unsqueeze(1))

    return self.linear(X)

Output activation function handled by torch.nn.CrossEntropyLoss

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html


LSTMs
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


RNNs

Advantages

• Process varying input length

• Model size remains constant

• Maintains historical information

Disadvantages
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Input: I love purple cats. Cats are neat.
Output: J'adore les chats violets. Les chats sont soignés.



RNNs

Advantages

• Process varying input length

• Model size remains constant

• Maintains historical information

Disadvantages

• Slower to computer

• Poor handling of long-term 
dependencies

• Does not consider future inputs to 
produce current state

• Largely replaced by transformers
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Input: I love purple cats. Cats are neat.
Output: J'adore les chats violets. Les chats sont soignés.
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https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html 

Bahdanau et al., ICLR 2015

We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely.

Attention Is All You Need (Vaswani et al, 2017)

https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html


Summary

• Recurrent neural networks maintain an internal state (memory)

• This internal state is useful when data has a temporal component

• They were frequently used in translation and audio processing

• We don’t see them as much over the last few years, but the concepts are still 
worthwhile to know
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