
Recurrent Neural Networks

Outline

• Recap convolutional neural networks

• Compare conventional and recurrent neural networks (RNNs)

• Text translation example

• Backpropagation through time

• Code comparison

• Parts-of-speech example

• RNN paradigms

• LSTMs

• A mention of attention

2

Recap: Convolutional Neural Networks

• Take five minutes to draw

3

Image Dataset

• We need an image dataset for next week’s lecture on inference/deploying.

• I want you all to take photos of whatever we’re classifying.

• From previous semesters
• Frank or Frary

• Pine or Palm

• Spoon or Fork

• Cup or Bowl

• Salt or Sugar

4

Conventional Neural Networks (including CNNs)

• Input: fixed sized tensor
• Though the batch size can be any value due to broadcasting

• Output: fixed sized tensor
• Though the batch size can be any value due to broadcasting

• Functionally deterministic (always produce the same output for a given input)
• When might you want different outputs on the same input?

5

Motivating Example: Text Translation

• Input: I love purple cats. Cats are neat.

• Output: J'adore les chats violets. Les chats sont soignés.

6

Recurrent Neural Networks

Operate over sequences (data with temporal dependencies).

7

Linear vs (Elman) Recurrent Neurons

• Input shape:

• Output shape:

• Input shape:

• Output shape:

8

class Neuron(torch.Module):

 def __init__(self, input_size, output_size):

 self.W = torch.randn(output_size, input_size) * 0.01

 self.b = torch.randn(output_size, 1) * 0.01

 def forward(self, X):

 linear = X @ self.W.T + self.b.T

 return F.sigmoid(linear)

*Untested code.

class RecurrentNeuron():

 def __init__(self, input_size, output_size):

 self.Wx = torch.randn(output_size, input_size) * 0.01

 self.Wh = torch.randn(output_size, output_size) * 0.01

 self.bh = torch.zeros(output_size, 1)

 self.output_size = output_size

 def forward(self, X, state=None):

 L, N, input_size = X.shape

 if not state:

 state = torch.zeros(N, self.output_size)

 output_sequence = []

 for x_t in X:

 state = F.tanh(x_t @ self.Wx + state @ self.Wh + self.bh)

 output_sequence.append(state)

 return torch.tensor(output_sequence), state

Unrolled Visualization

10

Motivating Example: Text Translation

• Input: I love purple cats. Cats are neat.

• Output: J'adore les chats violets. Les chats sont soignés.

11

Backpropgation Through Time (BPTT)

12

Backpropgation Through Time (BPTT)

13

Some BPTT Math

14

RNN Paradigm: One to One (RNN unneeded)

16

No need for recurrent connections.

RNN Paradigm: One to Many

17

RNN Paradigm: Many to One

18

RNN Paradigm: Many to Many (Synced)

19

RNN Paradigm: Many to Many (Encoder/Decoder)

20

Parts-Of-Speech Example

22

You all must submit sentences for the dataset.

"I is a teeth"

How do we pass this into a neural network?

https://docs.google.com/spreadsheets/d/1HJmlehaYhGWclDo1t0k6i1VHxN15zr8ZmJj7Rf_VEaI/edit#gid=1031300490

https://docs.google.com/spreadsheets/d/1HJmlehaYhGWclDo1t0k6i1VHxN15zr8ZmJj7Rf_VEaI/edit

Processing Natural Language with an NN

Here’s one way to convert text into numbers

1. Assign every word a unique number (e.g., 1 .. vocab_size)

2. Assign every part-of-speech a unique number (e.g., 1 .. num_classes)

3. Convert sentences into index tensors (using mapping from step 1)

4. Pass index tensors into an embedding layer (i.e., a simple lookup table)

5. Pass embedding outputs into the recurrent neural network (RNN)

6. Pass the RNN output into a fully-connected (FC) classification network

7. Convert the FC output into a part-of-speech (one-hot)

23

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

24

class POS_LSTM(torch.nn.Module):

 """Parts-of-speech LSTM model."""

 def __init__(self, vocab_size, embed_dim, hidden_dim, num_layers, parts_size):

 super().__init__()

 self.embed = torch.nn.Embedding(vocab_size, embed_dim)

 self.lstm = torch.nn.LSTM(embed_dim, hidden_dim, num_layers=num_layers)

 self.linear = torch.nn.Linear(hidden_dim, parts_size)

 def forward(self, X):

 X = self.embed(X)

 X, _ = self.lstm(X.unsqueeze(1))

 return self.linear(X)

Output activation function handled by torch.nn.CrossEntropyLoss

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

LSTMs

25

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs

Advantages

• Process varying input length

• Model size remains constant

• Maintains historical information

Disadvantages

26

Input: I love purple cats. Cats are neat.
Output: J'adore les chats violets. Les chats sont soignés.

RNNs

Advantages

• Process varying input length

• Model size remains constant

• Maintains historical information

Disadvantages

• Slower to computer

• Poor handling of long-term
dependencies

• Does not consider future inputs to
produce current state

• Largely replaced by transformers

27

Input: I love purple cats. Cats are neat.
Output: J'adore les chats violets. Les chats sont soignés.

28

https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html

Bahdanau et al., ICLR 2015

We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely.

Attention Is All You Need (Vaswani et al, 2017)

https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html

Summary

• Recurrent neural networks maintain an internal state (memory)

• This internal state is useful when data has a temporal component

• They were frequently used in translation and audio processing

• We don’t see them as much over the last few years, but the concepts are still
worthwhile to know

29

	Slide 1: Recurrent Neural Networks
	Slide 2: Outline
	Slide 3: Recap: Convolutional Neural Networks
	Slide 4: Image Dataset
	Slide 5: Conventional Neural Networks (including CNNs)
	Slide 6: Motivating Example: Text Translation
	Slide 7: Recurrent Neural Networks
	Slide 8: Linear vs (Elman) Recurrent Neurons
	Slide 10: Unrolled Visualization
	Slide 11: Motivating Example: Text Translation
	Slide 12: Backpropgation Through Time (BPTT)
	Slide 13: Backpropgation Through Time (BPTT)
	Slide 14: Some BPTT Math
	Slide 16: RNN Paradigm: One to One (RNN unneeded)
	Slide 17: RNN Paradigm: One to Many
	Slide 18: RNN Paradigm: Many to One
	Slide 19: RNN Paradigm: Many to Many (Synced)
	Slide 20: RNN Paradigm: Many to Many (Encoder/Decoder)
	Slide 22: Parts-Of-Speech Example
	Slide 23: Processing Natural Language with an NN
	Slide 24
	Slide 25: LSTMs
	Slide 26: RNNs
	Slide 27: RNNs
	Slide 28
	Slide 29: Summary

