Overfitting and Remedies

Find the perfect model complexity, Early stopping, Regularization, Dropout, Data
augmentation, and Domain randomization
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Recap: Parameter and Gradient Values

* Take five minutes to draw
* Example: activations with and without proper initialization and normalization
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Classroom Etiquette

* We all want to look effortlessly smart in front of our peers.

* It’s a fool’s errand. I've noticed it a bit in the class. Might be due to class makeup

* I’ve built my teaching philosophy around the “gift of failure”
* You need to give me wrong answers
* You need to be unafraid of being wrong

* You need to be ready to fail



L(g-4¥ } |4 -\ Overfitting

When your model learns/memorizes the training data and not some property
that is useful for inference. (”I’ve seen this input before... the answer is X.”)
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Causes of Overfitting

When your model learns/memorizes the training data and not
that is useful for inference. (”I’ve seen this input before... the answer is X.”)

* The model is too complex
* Too many parameters
* Too deep
* Too wide
* Too much memory



Causes of Overfitting

When your model learns/memorizes the training data and not
that is useful for inference. (”I’ve seen this input before... the answer is X.”)
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* The model is too complex {lm
* Too many parameters \O0 q >
AN C -
* Too deep j = 6, X F Q:f Y76
* Too wide

* Too much memory
* Parameters are too large (large parameters lead to steep curves)
* The model was trained for too long
* The dataset was too small
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Remedy: Find the Perfect Model Complexity

We could theoretically find the perfect model complexity for each problem

Easy for simple linear problems 6
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Hyperparameter Search/Tuning

« Common methods for “finding” good hyperparameters include
* Manual adjustments
e Grid search

Random search

Bayesian optimization

Evolutionary optimization

(and others)

* | happen to prefer a simple “Twiddle Search”



# Initial values

hyper_params = {
"learning rate": 0.1,
"batch_size": 64,
"num layers": 10,
"droﬁout": 0.5,

# Hyperparameter update factors

hyper param updates = {
"Iearniﬁg_rate": {"up": lambda lr: lr * 10, "down": lambda lr: lr / 10},
"batch size": {"up": lambda bs: bs * 2, "down": lambda bs: max(bs // 2, 1)
"num layers": {"up": lambda nl: nl * 2, "down": lambda nl: max(nl // 2, 1)
"dropout": {"up": lambda d: min(d + 0.1, 0.9), "down": lambda d: max(d - 0

o
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.1, 0.1)},
}

# Initial quality
best_metric_value = evaluate (hyper params)

# Cache of hyperparameter value combinations
cache = {hyper params.values(): best metric_value}

attempts = 1
while not done(best metric_value, attempts):

# Choose a hyperparameter and an update direction
hyper_param = choice(list (hyper_params.keys()))
update direction = choice(["up", "down"])

# Update the hyperparameter

current _value = hyper params[hyper param]

new value = hyper param updates[hyper param][update direction] (current value)
new_hyper params = {**hyper params, hyper param: new value}

# Check if the hyperparameter value combination has been evaluated before
if new hyper params.values() in cache:
continue

attempts += 1
# Evaluate the new hyperparameter value combination
metric_value = evaluate (new_hyper params)
cache [new_hyper params.values()] = metric value
if metric _value > best metric value:
best_metric value = metric value

hyper_params = new_hyper params

print (f"Best metric value: {best metric_value}: {hyper_ params}")



# Initial values

hyper params = {
"learning rate": 0.1,
"batch size": 64, , S; - 12(3
"num layers": 10, Ll LI -

"dropout": 0.5,

# Hyperparameter update factors

hyper param updates = ({
"learning rate": {"up": lambda lr: 1lr * 10, "down": lambda 1lr: 1lr / 10},
"batch size": {"up": lambda bs: bs * 2, "down": lambda bs: max(bs // 2, 1)
"num layers": {"up": lambda nl: nl * 2, "down": lambda nl: max(nl // 2, 1)
"dropout": {"up": lambda d: min(d + 0.1, 0.9), "down": lambda d: max(d - O
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# Initial quality
best metric value = evaluate (hyper params)

# Cache of hyperparameter value combinations
cache = {hyper params.values(): best metric value}

attempts = 1
while not done(best metric value, attempts):
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# Choose a hyperparameter and an update direction
hyper param = choice(list (hyper params.keys()))
update direction = choice(["up", "down"])

# Update the hyperparameter

current value = hyper params[hyper param]
new value = hyper param updates[hyper param] [update direction] (current value)
new hyper params = {**hyper params, hyper param: new value}

# Check if the hyperparameter value combination has been evaluated before
if new hyper params.values () in cache:
continue
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attempts += 1

# Evaluate the new hyperparameter value combination
metric value = evaluate (new hyper params)
cache[new hyper params.values ()] = metric value

if metric value > best metric value:
best metric value = metric value
hyper params = new hyper params

print (f"Best metric value: {best metric value}: {hyper params}")
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Remedy: Early Stopping and Checkpointing

cop. We can use the learned parameters from before we detected overfitting
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Checkpointing

for epoch in range (num epochs) :

model.train ()

for X, y in train loader:
vhat = model (X)
loss = criterion(y, yhat)
optimizer.zero grad()
loss.backward/()
optimizer.step()

model.eval ()
with torch.no grad():
for X, y in valid loader:
yvhat = model (X)
loss = criterion(y, yhat)
metric = metrics(y, yhat, model,

if metric.is best () :
model . save (f"model {epoch} .pkl")

metric)
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Remedy: Regularization

We can artificially constrain the parameter magnitudes in our loss function

(ie, optimize for lower parameter magnitudes)
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Derivative of % MSE with Regularization
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Remedy: Dropout

We can train the model in such a way that breaks memorization

‘Q model .train () vs model.eval ()



Randomly set neuron outputs to zero

Choose a different set of neurons each time
The model needs redundant representations
This leads to more general representations
A single pathway cannot memorize the input

ior layer in model.layers():
keep prob = 1 - dropout rate
keep = torch.rand like (layer.shape)

acti ion *= .float ()
activation /= keep pro

lor layer in model.layers():
activation *= 1.0

Remedy: Dropout
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https://albumentations.ai

Data Augmentation

2o
<€ for epoch in range (num_epochs) :
model .train ()
for X, y in train loader:
vhat = model (X)
Original Mirrored Rotated Brighter loss = criterion(y, vyhat)
optimizer.zero grad()
) MedinBlur loss.backward()
F optimizer.step()

Horizontal Flip
- 5

model .eval ()
with torch.no grad():
for X, y in valid loader:
yvhat = model (X)
loss = criterion(y, vyhat)
metric = metrics(y, yhat, model)

Original image
. T -

augmentation
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Remedy: Domain Randomization

* This process happens during the
data synthesis/creation process.

* |t often relies on simulation, and it
is frequently used to cross the
simulation-to-reality gap.

* This is often called Sim2Real in
machine learning and robotics.
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“Illustration of our approach. An object detector is
trained on hundreds of thousands of low-fidelity
rendered images with random camera positions, lighting
conditions, object positions, and non-realistic textures.
At test time, the same detector is used in the real world
with no additional training.”

— Tobin et al



Summary

* Models can accidentally memorize the input data instead of learning some useful,
general property

* We can prevent overfitting/memorization with several remedies

* Most remedies try to
 Artificially limit the magnitude of parameter values (early stopping, regularization)

* Add noise and randomness to the training process (dropout, augmentation, domain
randomization)

* We often use these remedies together



