Overfitting and Remedies

Find the perfect model complexity, Early stopping, Regularization, Dropout, Data
augmentation, and Domain randomization

Outline

* Drawing recap for initialization and normalization
* Overfitting and its causes

* Overfitting remedies
* Find the perfect model complexity
 Early stopping

Regularization

Dropout

Data augmentation

Domain randomization

Recap: Parameter and Gradient Values

* Take five minutes to draw
* Example: activations with and without proper initialization and normalization

)
N '7D _\ —-°—7D“7 \/ (\\Vi_) g\S(mij

1_.\

= Aw + b
A= 9(2)
} e . |

O\C‘\(\o\’\ \of\
Sond i3

Z

Classroom Etiquette

* We all want to look effortlessly smart in front of our peers.

* It’s a fool’s errand. I've noticed it a bit in the class. Might be due to class makeup

* I’ve built my teaching philosophy around the “gift of failure”
* You need to give me wrong answers
* You need to be unafraid of being wrong

* You need to be ready to fail

L(g-4¥ } |4 -\ Overfitting

When your model learns/memorizes the training data and not some property
that is useful for inference. (”I’ve seen this input before... the answer is X.”)

3 \
kS bo\(<

v 2

§' -6525 + €93

g 0 (

) {0 B5(k-04)-
h

;3Ei-

Independent Value

https://Www.desmos.c‘om/calcuIator/gysbxd1rO|

]
20 / 20
~—\J I ~\J
/
10 - 10
< J‘E,J
{]
10 0 / 10 20 30 -10 0 10 20 30
[

'{e 10

|

|
| -20 20

Causes of Overfitting

When your model learns/memorizes the training data and not
that is useful for inference. (”I’ve seen this input before... the answer is X.”)

* The model is too complex
* Too many parameters
* Too deep
* Too wide
* Too much memory

Causes of Overfitting

When your model learns/memorizes the training data and not
that is useful for inference. (”I’ve seen this input before... the answer is X.”)

o ; 100

* The model is too complex {lm
* Too many parameters \O0 q >
AN C -
* Too deep j = 6, X F Q:f Y76
* Too wide

* Too much memory
* Parameters are too large (large parameters lead to steep curves)
* The model was trained for too long
* The dataset was too small

Outline

* Drawing recap for initialization and normalization
* Overfitting and its causes

* Overfitting remedies
* Find the perfect model complexity
 Early stopping
* Regularization
* Dropout
* Data augmentation
* Domain randomization

1

Remedy: Find the Perfect Model Complexity

We could theoretically find the perfect model complexity for each problem

Easy for simple linear problems 6

hbel

| \neet

Hyperparameter Search/Tuning

« Common methods for “finding” good hyperparameters include
* Manual adjustments
e Grid search

Random search

Bayesian optimization

Evolutionary optimization

(and others)

* | happen to prefer a simple “Twiddle Search”

Initial values

hyper_params = {
"learning rate": 0.1,
"batch_size": 64,
"num layers": 10,
"droﬁout": 0.5,

Hyperparameter update factors

hyper param updates = {
"Iearniﬁg_rate": {"up": lambda lr: lr * 10, "down": lambda lr: lr / 10},
"batch size": {"up": lambda bs: bs * 2, "down": lambda bs: max(bs // 2, 1)
"num layers": {"up": lambda nl: nl * 2, "down": lambda nl: max(nl // 2, 1)
"dropout": {"up": lambda d: min(d + 0.1, 0.9), "down": lambda d: max(d - 0

o

by

.1, 0.1)},
}

Initial quality
best_metric_value = evaluate (hyper params)

Cache of hyperparameter value combinations
cache = {hyper params.values(): best metric_value}

attempts = 1
while not done(best metric_value, attempts):

Choose a hyperparameter and an update direction
hyper_param = choice(list (hyper_params.keys()))
update direction = choice(["up", "down"])

Update the hyperparameter

current _value = hyper params[hyper param]

new value = hyper param updates[hyper param][update direction] (current value)
new_hyper params = {**hyper params, hyper param: new value}

Check if the hyperparameter value combination has been evaluated before
if new hyper params.values() in cache:
continue

attempts += 1
Evaluate the new hyperparameter value combination
metric_value = evaluate (new_hyper params)
cache [new_hyper params.values()] = metric value
if metric _value > best metric value:
best_metric value = metric value

hyper_params = new_hyper params

print (f"Best metric value: {best metric_value}: {hyper_ params}")

Initial values

hyper params = {
"learning rate": 0.1,
"batch size": 64, , S; - 12(3
"num layers": 10, Ll LI -

"dropout": 0.5,

Hyperparameter update factors

hyper param updates = ({
"learning rate": {"up": lambda lr: 1lr * 10, "down": lambda 1lr: 1lr / 10},
"batch size": {"up": lambda bs: bs * 2, "down": lambda bs: max(bs // 2, 1)
"num layers": {"up": lambda nl: nl * 2, "down": lambda nl: max(nl // 2, 1)
"dropout": {"up": lambda d: min(d + 0.1, 0.9), "down": lambda d: max(d - O

I
}

14
.1, 0.1)1},

Initial quality
best metric value = evaluate (hyper params)

Cache of hyperparameter value combinations
cache = {hyper params.values(): best metric value}

attempts = 1
while not done(best metric value, attempts):

1!

Choose a hyperparameter and an update direction
hyper param = choice(list (hyper params.keys()))
update direction = choice(["up", "down"])

Update the hyperparameter

current value = hyper params[hyper param]
new value = hyper param updates[hyper param] [update direction] (current value)
new hyper params = {**hyper params, hyper param: new value}

Check if the hyperparameter value combination has been evaluated before
if new hyper params.values () in cache:
continue

1

attempts += 1

Evaluate the new hyperparameter value combination
metric value = evaluate (new hyper params)
cache[new hyper params.values ()] = metric value

if metric value > best metric value:
best metric value = metric value
hyper params = new hyper params

print (f"Best metric value: {best metric value}: {hyper params}")

Outline

* Drawing recap for initialization and normalization
* Overfitting and its causes

* Overfitting remedies
* Find the perfect model complexity
Early stopping
Regularization
Dropout
Data augmentation
Domain randomization

Remedy: Early Stopping and Checkpointing

cop. We can use the learned parameters from before we detected overfitting

b D= T X, M3 oM
[Tan - \
) fan Tan £

éXT) y'r% i)(V / ij

+ cain

Epoch

Checkpointing

for epoch in range (num epochs) :

model.train ()

for X, y in train loader:
vhat = model (X)
loss = criterion(y, yhat)
optimizer.zero grad()
loss.backward/()
optimizer.step()

model.eval ()
with torch.no grad():
for X, y in valid loader:
yvhat = model (X)
loss = criterion(y, yhat)
metric = metrics(y, yhat, model,

if metric.is best () :
model . save (f"model {epoch} .pkl")

metric)

21

Outline

* Drawing recap for initialization and normalization
* Overfitting and its causes

* Overfitting remedies
* Find the perfect model complexity
 Early stopping
* Regularization

Dropout

Data augmentation

Domain randomization

Remedy: Regularization

We can artificially constrain the parameter magnitudes in our loss function

(ie, optimize for lower parameter magnitudes)

dent Value — = A - 2
we ey (-)
(381

17 S (§-gY ¥ A Siell
wda"ﬁ’ \étcm/

Independent Value

Derivative of % MSE with Regularization
A 2 _ A A0\
1= (G- + 2306l 1=zt o

fa L A AN ~ ~ :(g—%\ﬁ’\‘ ﬂ-
— = - + A6 D&

O, = eﬁ-\—b(((ﬂ"a*g
0= O *[(9‘%\91\4— ne)

U\ G is o ,nge PGS\‘\W: velue o
Yorod

(.2\ & ES O Rarg(p’\fac{ltl(\F\‘v(2

Outline

* Drawing recap for initialization and normalization
* Overfitting and its causes

* Overfitting remedies
* Find the perfect model complexity
 Early stopping

Regularization

Dropout

Data augmentation

Domain randomization

Remedy: Dropout

We can train the model in such a way that breaks memorization

‘Q model .train () vs model.eval ()

Randomly set neuron outputs to zero

Choose a different set of neurons each time
The model needs redundant representations
This leads to more general representations
A single pathway cannot memorize the input

ior layer in model.layers():
keep prob = 1 - dropout rate
keep = torch.rand like (layer.shape)

acti ion *= .float ()
activation /= keep pro

lor layer in model.layers():
activation *= 1.0

Remedy: Dropout

y b

odel in such a way that breaks memorization

_()_Upper left pixel is yellow

Ima

< keep prob >
Image Pix

Has sharp claws

O\

Cat Score

Dog Scor

Cat Score

Dog Scor

Outline

* Drawing recap for initialization and normalization
* Overfitting and its causes

* Overfitting remedies
* Find the perfect model complexity
 Early stopping

Regularization

Dropout

Data augmentation

Domain randomization

https://albumentations.ai

Data Augmentation

2o
<€ for epoch in range (num_epochs) :
model .train ()
for X, y in train loader:
vhat = model (X)
Original Mirrored Rotated Brighter loss = criterion(y, vyhat)
optimizer.zero grad()
) MedinBlur loss.backward()
F optimizer.step()

Horizontal Flip
- 5

model .eval ()
with torch.no grad():
for X, y in valid loader:
yvhat = model (X)
loss = criterion(y, vyhat)
metric = metrics(y, yhat, model)

Original image
. T -

augmentation

31

Outline

* Drawing recap for initialization and normalization
* Overfitting and its causes

* Overfitting remedies
* Find the perfect model complexity
 Early stopping

Regularization

Dropout

Data augmentation

Domain randomization

Remedy: Domain Randomization

* This process happens during the
data synthesis/creation process.

* |t often relies on simulation, and it
is frequently used to cross the
simulation-to-reality gap.

* This is often called Sim2Real in
machine learning and robotics.

Tanng ____ [t

~
B
Fdd

“Illustration of our approach. An object detector is
trained on hundreds of thousands of low-fidelity
rendered images with random camera positions, lighting
conditions, object positions, and non-realistic textures.
At test time, the same detector is used in the real world
with no additional training.”

— Tobin et al

Summary

* Models can accidentally memorize the input data instead of learning some useful,
general property

* We can prevent overfitting/memorization with several remedies

* Most remedies try to
 Artificially limit the magnitude of parameter values (early stopping, regularization)

* Add noise and randomness to the training process (dropout, augmentation, domain
randomization)

* We often use these remedies together

