Overtitting and Remedies

Find the perfect model complexity, Early stopping, Regularization, Dropout, Data
augmentation, and Domain randomization

Outline

* Drawing recap for initialization and normalization
e Overfitting and its causes

e Overfitting remedies
* Find the perfect model complexity
 Early stopping

Regularization

Dropout

Data augmentation

Domain randomization

Recap: Parameter and Gradient Values

* Take five minutes to draw

* Example: activations with and without proper initialization and normalization

Classroom Etiquette

 We all want to look effortlessly smart in front of our peers.

* |t's a fool’s errand. I've noticed it a bit in the class. Might be due to class makeup

* |’ve built my teaching philosophy around the “gift of failure”
* You need to give me wrong answers
* You need to be unafraid of being wrong

* You need to be ready to fail

Overfitting

When your model learns/memorizes the training data and not
that is useful for inference. (”I’ve seen this input before... the answer is X.”)

Overfit Polynomial Validation and Training Loss

Independent Value

https://www.desmos.com/calculator/gysbxd1rOl

10 / 10

https://www.desmos.com/calculator/gysbxd1r0l

Causes of Overfitting

When your model learns/memorizes the training data and not
that is useful for inference. (”I’ve seen this input before... the answer is X.”)

* The model is too complex
* Too many parameters
* Too deep
e Too wide
* Too much memory

Causes of Overfitting

When your model learns/memorizes the training data and not
that is useful for inference. (”I’ve seen this input before... the answer is X.”)

* The model is too complex

 Too many parameters
* Too deep

e Too wide

* Too much memory

* Parameters are too large (large parameters lead to steep curves)
* The model was trained for too long
* The dataset was too small

Outline

* Drawing recap for initialization and normalization
e Overfitting and its causes

e OQverfitting remedies
* Find the perfect model complexity
Early stopping
Regularization
Dropout
Data augmentation
Domain randomization

10

Remedy: Find the Perfect Model Complexity

We could theoretically find the perfect model complexity for each problem

Easy for simple linear problems Harder for more complicated relationships

Hyperparameter Search/Tuning

* Common methods for “finding” good hyperparameters include
 Manual adjustments

Grid search

Random search

Bayesian optimization

Evolutionary optimization

(and others)

* | happen to prefer a simple “Twiddle Search”

Initial values
hyper params = {

"learning rate": 0.1,
"batch size": 64,
"num layers": 10,
"droﬁout": 0.5,

Hyperparameter update factors
hyper param updates = {

}

"learning rate": {"up": lambda 1lr: 1lr * 10, "down":

lambda 1r: 1r / 10},

"batch size": {"up": lambda bs: bs * 2, "down": lambda bs: max(bs // 2,
"num layers": {"up": lambda nl: nl * 2, "down": lambda nl: max(nl // 2,
"dropout": {"up": lambda d: min(d + 0.1, 0.9), "down": lambda d: max(d -

Initial quality
best metric value = evaluate (hyper params)

Cache of hyperparameter value combinations
cache = {hyper params.values(): best metric value}

attempts = 1
while not done(best metric value, attempts):

Choose a hyperparameter and an update direction
hyper param = choice(list (hyper params.keys()))
update direction = choice(["up", "down"])

Update the hyperparameter
current value = hyper params|hyper param]

new value = hyper param updates[hyper param][update direction] (current value)

new hyper params = {**hyper params, hyper param: new value}

1)
1)
0

Check if the hyperparameter value combination has been evaluated before

if new hyper params.values() in cache:
continue

attempts += 1

Evaluate the new hyperparameter value combination
metric value = evaluate (new hyper params)
cache [new hyper params.values()] = metric value

if metric value > best metric value:
best metric value = metric value
hyper params = new hyper params

print (f"Best metric value: {best metric value}: {hyper params}")

}I
by
.1,

0.

DR

13

Initial values

hyper params = ({
"learning rate": 0.1,
"batch size": 64,
"num layers": 10,
"dropout": 0.5,

Hyperparameter update factors

hyper param updates = {
"learning rate": {"up": lambda lr: 1r *
"batch size": {"up": lambda bs: bs * 2,
"num layers": {"up": lambda nl: nl * 2,
"dropout": {"up": lambda d: min(d + 0.1,

10, "down":

"down":
"down":
0.9),

lambda 1r: 1r / 10},

lambda bs: max(bs // 2,
lambda nl: max(nl // 2,

"down":

lambda d: max(d -

1)
1)
0

b
}

.1, 0.1)1},

14

",

Initial quality
best metric value = evaluate (hyper params)

Cache of hyperparameter value combinations
cache = {hyper params.values(): best metric value}

attempts = 1
while not done(best metric value, attempts):

hyper_paran - choice(List (hyper_parans.keys ()))

15

Choose a hyperparameter and an update direction
hyper param = choice(list (hyper params.keys()))
update direction = choice (["up", "down"])

Update the hyperparameter

current value = hyper params[hyper param]
new value = hyper param updates[hyper param] [update direction] (current value)
new hyper params = {**hyper params, hyper param: new value}

Check 1if the hyperparameter value combination has been evaluated before

if new hyper params.values () in cache:
continue

16

attempts += 1

Evaluate the new hyperparameter value combination
metric value = evaluate (new hyper params)
cache[new hyper params.values ()] = metric value

if metric value > best metric value:
best metric value = metric value
hyper params = new hyper params

print (f"Best metric value: {best metric value}: {hyper params}")

17

Outline

* Drawing recap for initialization and normalization
e Overfitting and its causes

e Overfitting remedies
* Find the perfect model complexity
* Early stopping

Regularization

Dropout

Data augmentation

Domain randomization

Remedy: Early Stopping and Checkpointing

We can use the learned parameters from before we detected overfitting

Epoch

Checkpointing

for epoch in range (num epochs) :

model.train ()

for X, y in train loader:
vhat = model (X)
loss = criterion(y, yhat)
optimizer.zero grad()
loss.backward ()
optimizer.step ()

model .eval ()
with torch.no grad() :
for X, y in valid loader:
vhat = model (X)
loss = criterion(y, yhat)
metric = metrics(y, yhat, model,

if metric.is best():
model . save (f"model {epoch} .pkl")

metric)

20

Outline

* Drawing recap for initialization and normalization
e Overfitting and its causes

e Overfitting remedies
* Find the perfect model complexity
Early stopping
Regularization
Dropout
Data augmentation
Domain randomization

Remedy: Regularization

We can artificially constrain the parameter magnitudes in our loss function

(ie, optimize for lower parameter magnitudes)

Derivative of 2 MSE with Regularization

Outline

* Drawing recap for initialization and normalization
e Overfitting and its causes

e OQverfitting remedies
* Find the perfect model complexity
 Early stopping
* Regularization

* Data augmentation
e Domain randomization

Remedy: Dropout

We can train the model in such a way that breaks memorization

O
O

OO0 O
000000

model .train () vs model.eval ()

26

Remedy: Dropout

We can train the model in such a way that breaks memorization

 Randomly set neuron outputs to zero
e Choose a different set of neurons each time

* The model needs redundant representations Ima Cat Score
* This leads to more general representations
* Asingle pathway cannot memorize the input Dog Score

for layer in model.layers(): s ¥ H |
keep prob = 1 - dropout rate das sharp Claws

keep = torch.rand like(layer.shape) < keep prob) <:)\\\\\\\\\\\\\\\\\\\\
o - Image Pix Cat Score

activation *= keep.float() Mg
activation /= keep prob

Dog Score

for layer in model.layers() :

activation *= 1.0
27

O
o
O

Outline

* Drawing recap for initialization and normalization
e Overfitting and its causes

e Overfitting remedies
* Find the perfect model complexity
Early stopping
Regularization
Dropout
Data augmentation
Domain randomization

https://albumentations.ai/

Data Augmentation

for epoch in range (num epochs) :

model .train ()

for X, y in train loader:
yvhat = model (X)
loss = criterion(y, vyhat)
optimizer.zero gradf()
loss.backward()
optimizer.step()

Original Mirrored Rotated

model .eval ()
with torch.no grad():
for X, y in valid loader:
vhat = model (X)
loss = criterion(y, yhat)
metric = metrics(y, yhat, model)

Original image
" v

augmentation

Contrast

Hue / Saturation / Value

o’ ’ '}
7-; . "

RS o

~ 49

z

30

https://albumentations.ai/

Outline

* Drawing recap for initialization and normalization
e Overfitting and its causes

e OQverfitting remedies
* Find the perfect model complexity
 Early stopping

Regularization

Dropout

Data augmentation

Domain randomization

Remedy: Domain Randomization

* This process happens during the
data synthesis/creation process.

* |t often relies on simulation, and it
is frequently used to cross the
simulation-to-reality gap.

* This is often called Sim2Real in
machine learning and robotics.

==
Training | Test
=

I
o

ldé

“Illustration of our approach. An object detector is
trained on hundreds of thousands of low-fidelity
rendered images with random camera positions, lighting
conditions, object positions, and non-realistic textures.
At test time, the same detector is used in the real world

with no additional training.”

— Tobin et al.

32

https://ieeexplore.ieee.org/abstract/document/8202133

Summary

* Models can accidentally memorize the input data instead of learning some useful,
general property

* We can prevent overfitting/memorization with several remedies

 Most remedies try to
 Artificially limit the magnitude of parameter values (early stopping, regularization)

* Add noise and randomness to the training process (dropout, augmentation, domain
randomization)

* We often use these remedies together

	Slide 1: Overfitting and Remedies
	Slide 2: Outline
	Slide 3: Recap: Parameter and Gradient Values
	Slide 5: Classroom Etiquette
	Slide 6: Overfitting
	Slide 7: https://www.desmos.com/calculator/gysbxd1r0l
	Slide 8: Causes of Overfitting
	Slide 9: Causes of Overfitting
	Slide 10: Outline
	Slide 11: Remedy: Find the Perfect Model Complexity
	Slide 12: Hyperparameter Search/Tuning
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Outline
	Slide 19: Remedy: Early Stopping and Checkpointing
	Slide 20: Checkpointing
	Slide 21: Outline
	Slide 22: Remedy: Regularization
	Slide 23: Derivative of ½ MSE with Regularization
	Slide 25: Outline
	Slide 26: Remedy: Dropout
	Slide 27: Remedy: Dropout
	Slide 29: Outline
	Slide 30: Remedy: Data Augmentation
	Slide 31: Outline
	Slide 32: Remedy: Domain Randomization
	Slide 33: Summary

