Overfitting and Remedies

Find the perfect model complexity, Early stopping, Regularization, Dropout, Data augmentation, and Domain randomization

Drawing recap for initialization and normalization

- Overfitting remedies
 - Find the perfect model complexity
 - Early stopping
 - Regularization
 - Dropout
 - Data augmentation
 - Domain randomization

Recap: Parameter and Gradient Values

- Take five minutes to draw
- Example: activations with and without proper initialization and normalization

Classroom Etiquette

- We all want to look effortlessly smart in front of our peers.
 - It's a fool's errand. I've noticed it a bit in the class. Might be due to class makeup

- I've built my teaching philosophy around the "gift of failure"
 - You need to give me wrong answers
 - You need to be unafraid of being wrong
 - You need to be ready to fail

Overfitting

When your model learns/memorizes the training data and not some property that is useful for inference. ("I've seen this input before... the answer is X.")

https://www.desmos.com/calculator/gysbxd1r0l

Causes of Overfitting

When your model learns/memorizes the training data and not some property that is useful for inference. ("I've seen this input before... the answer is X.")

- The model is too complex
 - Too many parameters
 - Too deep
 - Too wide
 - Too much memory

Causes of Overfitting

When your model learns/memorizes the training data and not some property that is useful for inference. ("I've seen this input before... the answer is X.")

- The model is too complex
 - Too many parameters
 - Too deep
 - Too wide
 - Too much memory
- Parameters are too large (large parameters lead to steep curves)
- The model was trained for too long
- The dataset was too small

Drawing recap for initialization and normalization

- Overfitting remedies
 - Find the perfect model complexity
 - Early stopping
 - Regularization
 - Dropout
 - Data augmentation
 - Domain randomization

Remedy: Find the Perfect Model Complexity

We could theoretically find the perfect model complexity for each problem

Hyperparameter Search/Tuning

- Common methods for "finding" good hyperparameters include
 - Manual adjustments
 - Grid search
 - Random search
 - Bayesian optimization
 - Evolutionary optimization
 - (and others)

• I happen to prefer a simple "Twiddle Search"

```
# Initial values
hyper params = {
    "learning rate": 0.1,
    "batch size": 64,
    "num layers": 10,
    "dropout": 0.5,
# Hyperparameter update factors
hyper param updates = {
    "learning rate": {"up": lambda lr: lr * 10, "down": lambda lr: lr / 10},
    "batch size": {"up": lambda bs: bs * 2, "down": lambda bs: max(bs // 2, 1)},
    "num layers": {"up": lambda nl: nl * 2, "down": lambda nl: max(nl // 2, 1)},
    "dropout": {"up": lambda d: min(d + 0.1, 0.9), "down": lambda d: max(d - 0.1, 0.1)},
# Initial quality
best metric value = evaluate(hyper params)
# Cache of hyperparameter value combinations
cache = {hyper params.values(): best metric value}
attempts = 1
while not done(best metric value, attempts):
    # Choose a hyperparameter and an update direction
    hyper param = choice(list(hyper params.keys()))
    update direction = choice(["up", "down"])
    # Update the hyperparameter
    current value = hyper params[hyper param]
    new value = hyper param updates[hyper param][update direction](current value)
    new hyper params = {**hyper params, hyper param: new value}
    # Check if the hyperparameter value combination has been evaluated before
    if new hyper params.values() in cache:
        continue
    attempts += 1
    # Evaluate the new hyperparameter value combination
    metric value = evaluate(new hyper params)
    cache[new hyper params.values()] = metric value
    if metric value > best metric value:
       best metric value = metric value
       hyper params = new hyper params
    print(f"Best metric value: {best metric value}: {hyper params}")
```

```
# Tnitial values
hyper params = {
          "learning_rate": 0.1,
          "batch size": 64,
          "num layers": 10,
          "dropout": 0.5,
# Hyperparameter update factors
hyper param updates = {
          "learning rate": {"up": lambda lr: lr * 10, "down": lambda lr: lr / 10},
          "batch size": {"up": lambda bs: bs * 2, "down": lambda bs: max(bs // 2, 1)},
          "num layers": {"up": lambda nl: nl * 2, "down": lambda nl: max(nl // 2, 1)},
          "dropout": {"up": lambda d: min(d + 0.1, 0.9), "down": lambda d: max(d - 0.1, 0.1)},
best metric value = evaluate (hyper params)
# Cache of hyperparameter value combinations cache = {hyper_parames.values(): best_metric_value}
attempts = 1
while not done(best_metric_value, attempts):
 # Choose a hyperparameter and an update directio
hyper_param = choice(list(hyper_params.keys()))
update_direction = choice(["up", "down"])
 # (poster inv nyperparaments
current, value = hyper params[hyper_param]
new*allie = hyper param update of hyper_param]
new*allie = hyper param update of hyper_param. (update_direction](current_value)
new*hyper_params = ("hyper_params, hyper_param: new value)
 at tempts += 1
 # Evaluate the new hyperparameter value combinat
metric_value = evaluate(new_hyper_params)
cache[new_hyper_params.values()] = metric_value
 if metric value > best metric value:
   be st metric value = metric value
hyper params = new hyper params
 print(f"Best metric value: (best_metric_value): (hyper_params)")
```

```
f Hyperparameter opdate inchors
hyper parameter of profit on = (profit based on tr. in = 10, "doon"; lasked int in = (10),
"based, dir." ("upr." lasked on to be = 2, "doon"; lasked on modes ("2, 13),
"mum_layers" ("upr." lasked on in in = 2, "doon"; lasked on modes ("2, 13),
"doopoors" ("upr." lasked on in in = 2, "doon"; lasked on modes ("2, 13),
"doopoors" ("upr." lasked on inid = 0.1, 0.9), "doon" lasked on mode of modes (0.1, 0.1),
# Initial quality
best metric value = evaluate(hyper params)
# Cache of hyperparameter value combinations
cache = {hyper params.values(): best metric value}
attempts = 1
while not done(best metric value, attempts):
   # Choose a hyperparameter and an update direction
hyper_param = choice(list(hyper_params.keys()))
update_direction = choice(["up", "down"])
   # Update the hyperparameter
current, value = hyper parame[hyper param]
new_value = hyper parame_dise_tellprper_parami[update_direction](current_value)
new_hyper_parame_={**hyper_parame, hyper_param: new_value)
   # Check if the hyperparameter value combination has been evaluated before if new hyperparams values() in cache:
   metric value = evaluate (new hyper params)
cache [new hyper params.values()] = metric value
     hyper params = new hyper params
   print(f"Best metric value: (best_metric_value): (hyper_params)")
```

```
F Hyperparameter update factors
hyperparam updates = "projection of the project of the projec
# Cache of hyperparameter value combinations cache = {hyperparameter values(): best_metric_value}
attempts = 1
while not done(best_metric_value, attempts):
                       # Choose a hyperparameter and an update direction
                      hyper param = choice(list(hyper params.keys()))
                      update direction = choice(["up", "down"])
                       # Update the hyperparameter
                      current_value = hyper_params[hyper_param]
                      new value = hyper param updates[hyper param][update direction](current value)
                      new hyper params = { **hyper params, hyper param: new value}
                       # Check if the hyperparameter value combination has been evaluated before
                      if new hyper params.values() in cache:
                                             continue
    # Evaluate the new hyperparameter value combinat
metric_value = evaluate (new_hyper_params)
cache (new_hyper_params.values()] = metric_value
    if metric value > best_metric_value:
    best_metric_value = metric_value
    hyper_params = new_hyper_params
```

print(f"Best metric value: (best_metric_value): (hyper_params)")

```
# Hyperparameter update factors

hyperparameter update factors

hyperparameter ("pri") lacked bir il " 10, "loom"; lacked bir il " 10),

"both dist" ("pri") lacked bir bir " 2, "doom"; lacked bir machs // 2, 11),

"mun jayers" ("pri") lacked bir in " 2, "doom"; lacked bir machs // 2, 11),

"doopoort" ("pri") lacked bir in " 2, "doom"; lacked bir machs // 2, 11),

"doopoort" ("pri") lacked bir in in(d = 0,1,0,0), "doom"; lacked bir machs // 10,0,11),
# Cache of hyperparameter value combinations
cache = {hyper_parames.values(): best_metric_value}
attempts = 1
while mot done(best_metric_value, attempts):
  # Choose a hyperparameter and an update direction
hyper_param = choice(list(hyper_params.keys()))
update_direction = choice(["up", "down"])
  current_value = hyper_params[hyper_params]

newvalue = hyper_param updates[hyper_params][update_direction](current_value)

newhyper_params = "*hyper_params, hyper_params newvalue)
  # Check if the hyperparameter value combination has been evaluated before if new hyperparams.values() in cache:
             attempts += 1
             # Evaluate the new hyperparameter value combination
             metric value = evaluate(new hyper params)
             cache[new hyper params.values()] = metric value
             if metric value > best metric value:
                           best metric_value = metric_value
                            hyper params = new hyper params
             print(f"Best metric value: {best metric value}: {hyper params}")
```

Drawing recap for initialization and normalization

- Overfitting remedies
 - Find the perfect model complexity
 - Early stopping
 - Regularization
 - Dropout
 - Data augmentation
 - Domain randomization

Remedy: Early Stopping and Checkpointing

We can use the learned parameters from before we detected overfitting

Checkpointing

```
for epoch in range(num epochs):
   model.train()
    for X, y in train loader:
        yhat = model(X)
        loss = criterion(y, yhat)
        optimizer.zero grad()
        loss.backward()
        optimizer.step()
   model.eval()
   with torch.no_grad():
        for X, y in valid loader:
            yhat = model(X)
            loss = criterion(y, yhat)
            metric = metrics(y, yhat, model, metric)
    if metric.is best():
       model.save(f"model{epoch}.pkl")
```

Drawing recap for initialization and normalization

- Overfitting remedies
 - Find the perfect model complexity
 - Early stopping
 - Regularization
 - Dropout
 - Data augmentation
 - Domain randomization

Remedy: Regularization

We can artificially *constrain* the parameter magnitudes <u>in our loss function</u> (ie, optimize for lower parameter magnitudes)

Derivative of ½ MSE with Regularization

Drawing recap for initialization and normalization

- Overfitting remedies
 - Find the perfect model complexity
 - Early stopping
 - Regularization
 - Dropout
 - Data augmentation
 - Domain randomization

Remedy: Dropout

We can train the model in such a way that breaks memorization

Remedy: Dropout

We can train the model in such a way that breaks memorization

- Randomly set neuron outputs to zero
- Choose a different set of neurons each time
- The model needs redundant representations
- This leads to more general representations
- A single pathway cannot memorize the input

```
# In model.train() mode
for layer in model.layers():
    keep_prob = 1 - dropout_rate
    keep = torch.rand_like(layer.shape) < keep_prob
    activation *= keep.float()
    activation /= keep_prob

# In model.eval() mode
for layer in model.layers():
    activation *= 1.0</pre>
```


Drawing recap for initialization and normalization

- Overfitting remedies
 - Find the perfect model complexity
 - Early stopping
 - Regularization
 - Dropout
 - Data augmentation
 - Domain randomization

Remedy: Data Augmentation

Drawing recap for initialization and normalization

- Overfitting remedies
 - Find the perfect model complexity
 - Early stopping
 - Regularization
 - Dropout
 - Data augmentation
 - Domain randomization

Remedy: Domain Randomization

- This process happens during the data synthesis/creation process.
- It often relies on simulation, and it is frequently used to cross the simulation-to-reality gap.
- This is often called Sim2Real in machine learning and robotics.

"Illustration of our approach. An object detector is trained on hundreds of thousands of low-fidelity rendered images with random camera positions, lighting conditions, object positions, and non-realistic textures. At test time, the same detector is used in the real world with no additional training."

— <u>Tobin et al.</u>

Summary

- Models can accidentally memorize the input data instead of learning some useful, general property
- We can prevent overfitting/memorization with several remedies
- Most remedies try to
 - Artificially limit the magnitude of parameter values (early stopping, regularization)
 - Add noise and randomness to the training process (dropout, augmentation, domain randomization)
- We often use these remedies together