Activations, Problematic
Gradients, Initialization, and
Normalization



Outline

e Activations (output of an activation function)

* Problematic gradients (exploding and vanishing)
* The benefits of depth in neural networks

* Proper parameter initialization

* Normalization (preprocessing) of inputs and activations (a type of layer)



Recap: Optimization Technigues

* Take five minutes to draw



Purpose of Assignments

| provide most (if not all code) on assignments for 2 reasons:
1. This provides a nice set of working examples you can use for projects
2. It keeps assignments shorter so that you have more time for projects

You should end up spending more time reading my code and more time writing
your own code.



Activation Functions, Two-Layer Network
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Sigmoid and RelLU Activation Functions

Sigmoid RelU
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Problematic Gradients, Three-Layer Network
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Fixes for Problematic Gradients

*Shallower networks

* Gradient clipping

* Clever initialization

* Batch normalization

* Better activation functions

 Residual connections



Depth vs Width



Proper Initialization

 Activation functions produce “useful” output around O
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PyTorch Kaiming He Initialization

torch.nn.init.kaiming_uniform_( tensor, a=0, mode="'fan_in',

nonlinearity="'leaky_relu') [SOURCE]

Fills the input Tensor with values according to the method described in Delving deep into rectifiers:

Surpassing human-level performance on ImageNet classification - He, K. et al. (2015), using a
uniform distribution. The resulting tensor will have values sampled from U (—bound, bound)

where

3

bound = gain X

| gain = caicuiate_gain(noniinearity, a)
std = gain / math.sqrt(fan)
bound = math.sqrt(3.0) * std

with torxch.no_grad():
return tensor.uniform_(-bound, bound)

# Calculate uniform bounds from standard deviation
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Batch Normalization

e What is normalization?

* Adjusting values to a different (common) scale.
* For example, the standard-score normalization: X = %

* Normalize with respect to what?



Batch Normalization



Summary

 Activation functions behave nicely with inputs around zero
* Gradients behave nicely with values around zero (but not too small)
* Depth is good for extracting/finding complex features

* You should
 Normalize input features
* Initialize parameters properly
* Prefer deeper over wider networks
* Try/consider batch normalization
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