Activations, Problematic
Gradients, Initialization, and
Normalization

Outline

e Activations (output of an activation function)

* Problematic gradients (exploding and vanishing)
* The benefits of depth in neural networks

* Proper parameter initialization

* Normalization (preprocessing) of inputs and activations (a type of layer)

Recap: Optimization Technigues

* Take five minutes to draw

Purpose of Assignments

| provide most (if not all code) on assignments for 2 reasons:
1. This provides a nice set of working examples you can use for projects
2. It keeps assignments shorter so that you have more time for projects

You should end up spending more time reading my code and more time writing
your own code.

Activation Functions, Two-Layer Network

Without Activation Functions With Actlvatlon Functions
7111 — glolyy [T 4 pl1] 7011 — 4loly [T o plal
Al = 711 A1 — P

7121 — Aty 21T 4 pl2] 712] = 21T

A2l = 7121 A2l = a(Z

Sigmoid and RelLU Activation Functions

Sigmoid RelU

o) = 1 !

il + 4 /
1 — 1
Relu'(z)=0i
/ ReLU'(z) =
/ o (2) = o(z)(1 — of2))
_—(/ _\

-0
==
I

VA

oo

ReLu(z) =|max (0,z)

Problematic Gradients, Three-Layer Network

5 O — (A = Y)ABI(1 — ALY WAL (1 — AR)W AL (1 - ALY x
|14

[1] [1] oL Within %2 MSE and Sigmoids
Exploding W™ =W —napm Vanishing

Fixes for Problematic Gradients

*Shallower networks

* Gradient clipping

* Clever initialization

* Batch normalization

* Better activation functions

 Residual connections

Depth vs Width

Proper Initialization

 Activation functions produce “useful” output around O

o 7111 — aloly 12T 4 pl1] ek |
. Al = 5 (z11)) e

e

| | | o 2000 4000 G000 BOOO 10000
mi # 10
—— Bad Initialization
Proper Initialization

0.8

0.6

0.4

0.2

0.0 T

0 2000 4000 G000 B000 10000

PyTorch Kaiming He Initialization

torch.nn.init.kaiming_uniform_(tensor, a=0, mode="'fan_in',

nonlinearity="'leaky_relu') [SOURCE]

Fills the input Tensor with values according to the method described in Delving deep into rectifiers:

Surpassing human-level performance on ImageNet classification - He, K. et al. (2015), using a
uniform distribution. The resulting tensor will have values sampled from U (—bound, bound)

where

3

bound = gain X

| gain = caicuiate_gain(noniinearity, a)
std = gain / math.sqrt(fan)
bound = math.sqrt(3.0) * std

with torxch.no_grad():
return tensor.uniform_(-bound, bound)

Calculate uniform bounds from standard deviation

fan _mode

T —

12

Batch Normalization

e What is normalization?

* Adjusting values to a different (common) scale.
* For example, the standard-score normalization: X = %

* Normalize with respect to what?

Batch Normalization

Summary

 Activation functions behave nicely with inputs around zero
* Gradients behave nicely with values around zero (but not too small)
* Depth is good for extracting/finding complex features

* You should
 Normalize input features
* Initialize parameters properly
* Prefer deeper over wider networks
* Try/consider batch normalization

	Slide 1: Activations, Problematic Gradients, Initialization, and Normalization
	Slide 2: Outline
	Slide 3: Recap: Optimization Techniques
	Slide 4: Purpose of Assignments
	Slide 5: Activation Functions, Two-Layer Network
	Slide 6
	Slide 7: Sigmoid and ReLU Activation Functions
	Slide 8: Problematic Gradients, Three-Layer Network
	Slide 9: Fixes for Problematic Gradients
	Slide 10: Depth vs Width
	Slide 11: Proper Initialization
	Slide 12: PyTorch Kaiming He Initialization
	Slide 13: Batch Normalization
	Slide 14: Batch Normalization
	Slide 15: Summary

