Approximation Algorithms

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives
• Discuss strategies for finding solutions to difficult problems
• Apply an approximation algorithm to an NP-Hard problem

Exercise
• None

Good Enough
NP-Complete

What does it mean if your problem is NP-Complete?
1. It belongs to NP, and
2. It belongs to NP-Hard.

What does it mean to belong to NP?
• We can verify a solution as correct or incorrect in polynomial time.

What does it mean to belong to NP-Hard?
• We do not know an algorithm to solve it in polynomial-time.
So, your problem is NP-Hard...

• This **does not** mean you cannot solve your problem.

• This **does not** mean that you cannot get an optimal solution.

• It does mean that you should set your expectations appropriately.

• You are probably not going to accidentally prove that P = NP.
Strategies

1. Focus on solving a special case that is tractable
 • The general Knapsack problem is NP-Complete, but we solved it by looking at problems where the total capacity W was $O(nW)$.

2. Solve the problem in exponential time (but faster than brute-force)
 • We looked an algorithm for TSP that runs in $O(n^22^n)$ instead of $O(n!)$

3. Solve the problem using some heuristics
 • These algorithms are not guaranteed to give optimal solutions,
 • but they are (generally) fast.
The Traveling Salesman Problem

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

• **Input**: a complete, undirected graph with non-negative edge costs

• **Output**: a minimum cost tour (a cycle that visits each vertex once)
Solving the TSP

• There are $n!$ total possible tours.

<table>
<thead>
<tr>
<th>Input Size</th>
<th>Brute-Force n!</th>
<th>Exponential $O(n^{22^n})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>87 billion 178 million ...</td>
<td>~ 3 million</td>
</tr>
<tr>
<td>15</td>
<td>1 trillion 307 billion ...</td>
<td>~ 7 million</td>
</tr>
<tr>
<td>16</td>
<td>20 trillion 922 billion ...</td>
<td>~ 16 million ...</td>
</tr>
<tr>
<td>30</td>
<td>265 nonillion 252 octillion 859 septillion 812 sextillion 191 quintillion 58 quadrillion 636 trillion ...</td>
<td>~ 966 billion 367 million ...</td>
</tr>
</tbody>
</table>

Very long time
Why is TSP so difficult?

Doesn’t it seem like it is just a special case of SSSP, with one extra edge back to the start vertex?

Remember our SSSP sub-problems (Bellman-Ford):

For every edge edge budget (\(\text{FOR num_edges IN } [0 . . \leq n]\))

\[L_{ij} = \text{the length of the shortest path from 1 to j that uses at most i edges}\]
Why is TSP so difficult?

For every edge edge budget (\texttt{FOR num_edges IN [0 ..= n]})

Let $L_{ij} =$ the length of the shortest path from 1 to j that uses at most i edges

How are they different?

- Subproblems of SSSP do not solve the original TSP problem (SSSP does not require the use of i edges).
- SSSP doesn’t enforce that we cannot visit a vertex more than once.
- If we change SSSP to enforce the use of i edges with no repeats, we lose the ability to solve larger problems from smaller problems.
Dynamic Programming for TSP

For every destination \(j \) in \(\{1, 2, ..., n\} \), and for every subset \(S \) of \(\{1, 2, ..., n\} \)

\[L_{s,j} = \text{the minimum length of a path from 1 to } j \text{ that visits all of the vertices in } S \]

How does this improve on brute-force?

• It does not care about the order in which we visit the vertices in \(S \).
• But, there are still an exponential number of choices for \(S \rightarrow O(2^n) \).
Optimal Substructure Lemma

• Let P be a shortest path from 1 to j that visits S.
• If the last hop of P is \((k, j)\)
• Then \(P'\) is the shortest path from 1 to k

\[
L_{i,j} = \min_{k \in S, k \neq j} \left(L_{S-\{j\}k} + C_{kj} \right)
\]

What if we don’t need the optimal path? Just one that is “good enough”?
Local Search Heuristic for Hard Problems
FUNCTION LocalSearch(numTrials, solutionFcn, evaluationFcn)

 bestSolution = solutionFcn()
 bestPerformance = evaluationFcn(bestSolution)

 FOR trial IN [0 ..< numTrials]
 newSolution = solutionFcn(bestSolution)
 newPerformance = evaluationFcn(newSolution)

 IF newPerformance > bestPerformance
 bestPerformance = newPerformance
 bestSolution = newSolution

 RETURN bestSolution
Local Search

• Let X be a set of candidate solutions to a problem
• For example, let it be all possible tours of a graph

The key to local search is to define a neighborhood:
• For each x in X, specify which y in X are its “neighbors”
Local Search

• Let X be a set of candidate solutions to a problem
• For example, let it be all possible tours of a graph

The key to local search is to define a neighborhood:
• For each x in X, specify which y in X are its “neighbors”
Local Search
Local Search

Optimum

Local Optimum
Local Search
Local Search
Local Search
Let’s say that two tours are neighbors if they differ by a minimal number of edges.
FUNCTION LocalSearch(numTrials, solutionFcn, evaluationFcn)

 bestSolution = solutionFcn() # any permutation of the cities
 bestPerformance = evaluationFcn(bestSolution)

 FOR trial IN [0 ..< numTrials]
 newSolution = solutionFcn(bestSolution)
 newPerformance = evaluationFcn(newSolution)

 IF newPerformance > bestPerformance
 bestPerformance = newPerformance
 bestSolution = newSolution

 RETURN bestSolution
The Max-Cut Problem

- Input: an undirected graph
- Output: a cut (A,B) that maximizes the number of crossing edges

- Reminder: a cut is a partition of the vertices into two non-empty sets
- How many possible cuts are there?

It turns out that:
- The min-cut problem is tractable (we have a polynomial time algorithm)
- The max-cut problem is NP-Complete
How many edges cross the max-cut?

a. 4
b. 6
c. 8
d. 10
How many edges cross the max-cut?

a. 4
b. 6
c. 8
d. 10
Local Search for Max-Cut

Notation: for a cut \((A, B)\) and a vertex \(v\):

- \(C_v(A, B)\) = the number of edges incident on \(v\) that cross \((A, B)\)
- \(D_v(A, B)\) = the number of edges incident on \(v\) that don’t cross \((A, B)\)

\[
\begin{align*}
 C_v &= 2 \\
 D_v &= 3
\end{align*}
\]
Local Search for Max-Cut

1. Let \((A,B)\) be some arbitrary cut of the graph \(G\)

2. While there is a vertex \(v\) with \(D_v(A,B) > C_v(A,B)\)
 1. move \(v\) to the other side of the cut

3. Return the final cut \((A,B)\)
About this algorithm

• This algorithm runs in polynomial time (quadratic)

• This algorithm is not guaranteed to give the optimal cut

• This algorithm outputs a cut which is at least 50% of the maximum possible
About Local Search Algorithms

How do you pick the initial solution?

• Use a heuristic
• “this type of solution is usually a good place to start”
• Use a random choice

Which superior neighbor should you choose?

• Use a heuristic
• Choose the neighbor at random

Choose the neighbor that yields the most improvement

How do you define the neighborhood?

Can you think of some simple techniques for improving local search?

• Run the algorithm multiple times with some random choices!
• Independent trials.
• Combine good solutions.