Approximation Algorithms

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives

- Discuss strategies for finding solutions to **difficult** problems
- Apply an approximation algorithm to an NP-Hard problem

Exercise

- None
NP-Complete

What does it mean if your problem is NP-Complete?
1. It belongs to NP, and
2. It belongs to NP-Hard.

What does it mean to belong to NP?
• We can verify a solution as correct or incorrect in polynomial time.

What does it mean to belong to NP-Hard?
• We do not know an algorithm to solve it in polynomial-time.
So, your problem is NP-Hard...

• This **does not** mean you cannot solve your problem.

• This **does not** mean that you cannot get an optimal solution.

• It does mean that you should set your expectations appropriately.

• You are probably not going to accidentally prove that P = NP.
Strategies

1. Focus on solving a special case that is tractable
 • The general Knapsack problem is NP-Complete, but we solved it by looking at problems where the total capacity W was $O(nW)$.

1. Solve the problem in exponential time (but faster than brute-force)
 • We looked an algorithm for TSP that runs in $O(n^2 2^n)$ instead of $O(n!)$

2. Solve the problem using some heuristics
 • These algorithms are not guaranteed to give optimal solutions,
 • but they are (generally) fast.
The Traveling Salesman Problem

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

- **Input**: a complete, undirected graph with non-negative edge costs
- **Output**: a minimum cost tour (a cycle that visits each vertex once)
Solving the TSP

- There are $n!$ total possible tours.

<table>
<thead>
<tr>
<th>Input Size</th>
<th>Brute-Force $n!$</th>
<th>Exponential $O(n^{2}2^n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>87 billion 178 million ...</td>
<td>~ 3 million</td>
</tr>
<tr>
<td>15</td>
<td>1 trillion 307 billion ...</td>
<td>~ 7 million</td>
</tr>
<tr>
<td>16</td>
<td>20 trillion 922 billion ...</td>
<td>~ 16 million ...</td>
</tr>
<tr>
<td>30</td>
<td>265 nonillion 252 octillion 859 septillion 812 sextillion 191 quintillion 58 quadrillion 636 trillion ...</td>
<td>~ 966 billion 367 million ...</td>
</tr>
</tbody>
</table>
Why is TSP so difficult?

Doesn’t it seem like it is just a special case of SSSP, with one extra edge back to the start vertex?

Remember our SSSP sub-problems (Bellman-Ford):

For every edge edge budget (FOR num_edges IN [0 ..= n])

Let L_{ij} = the length of the shortest path from 1 to j that uses at most i edges
Why is TSP so difficult?

For every edge edge budget (FOR num_edges IN [0 ..= n])

Let $L_{ij} =$ the length of the shortest path from 1 to j that uses at most i edges.

How are they different?

- Subproblems of SSSP do not solve the original TSP problem (SSSP does not require the use of i edges).
- SSSP doesn’t enforce that we cannot visit a vertex more than once.
- If we change SSSP to enforce the use of i edges with no repeats, we lose the ability to solve larger problems from smaller problems.
Dynamic Programming for TSP

For every destination j in \{1, 2, ..., n\}, and for every subset S of \{1, 2, ..., n\}
\[L_{s,j} = \text{the minimum length of a path from 1 to j that visits all of the vertices in } S \]

How does this improve on brute-force?
• It does not care about the order in which we visit the vertices in S.
• But, there are still an exponential number of choices for S \(\rightarrow O(2^n) \)
Optimal Substructure Lemma

• Let P be a shortest path from 1 to j that visits S.
• If the last hop of P is (k, j)
 \[L' = \min_{\# \in \&} L_{\&}(\#, \#') + C_{\# k} \]
• Then P' is the shortest path from 1 to k

What if we don’t need the optimal path? Just one that is “good enough”?
Local Search Heuristic for Hard Problems
Local Search

- Let X be a set of candidate solutions to a problem
- For example, let it be all possible tours of a graph

The key to local search: to define a neighborhood:
- For each x in X, specify which y in X are its “neighbors”
Local Search

• Let X be a set of candidate solutions to a problem
• For example, let it be all possible tours of a graph

The key to local search to define a neighborhood:
• For each x in X, specify which y in X are its “neighbors”
Local Search
Local Search

Optimum

Local Optimum
Local Search
Local Search
Local Search
Local Search

Optimum

Local Optimum
Neighborhood for TSP

Let’s say that two tours are neighbors if they differ by a minimal number of edges.
General Local Search Process

1. Let x = some initial solution

2. While the current solution, x, has a superior neighbor y, replace x with y

3. Return the final value for y (the locally optimal solution)

Simulated Annealing Demo
Your diagram shows a series of numbers: 16, 17, 1, 27, 12, 49. The numbers are connected with arrows, suggesting a sequence or process.
The Max-Cut Problem

• Input: an undirected graph
• Output: a cut (A,B) that maximizes the number of crossing edges

• Reminder: a cut is a partition of the vertices into two non-empty sets
• How many possible cuts are there?

It turns out that:
• The min-cut problem is tractable (we have a polynomial time algorithm)
• The max-cut problem is NP-Complete
How many edges cross the max-cut?

a. 4
b. 6
c. 8
d. 10
How many edges cross the max-cut?

a. 4
b. 6
c. 8
d. 10
Local Search for Max-Cut

Notation: for a cut \((A, B)\) and a vertex \(v\):

- \(C_v(A, B)\) = the number of edges incident on \(v\) that cross \((A, B)\)
- \(D_v(A, B)\) = the number of edges incident on \(v\) that don’t cross \((A, B)\)

\[C_v = 2\]
\[D_v = 3\]
Local Search for Max-Cut

1. Let (A,B) be some arbitrary cut of the graph G

2. While there is a vertex v with $D_v(A,B) > C_v(A,B)$
 1. move v to the other side of the cut

3. Return the final cut (A,B)
About this algorithm

• This algorithm runs in polynomial time (quadratic)

• This algorithm is not guaranteed to give the optimal cut

• This algorithm outputs a cut which is at least 50% of the maximum possible
About Local Search Algorithms

How do you pick the initial solution?
- Use a heuristic
- “this type of solution is usually a good place to start”
- Use a random choice

Which superior neighbor should you choose?
- Use a heuristic
- Choose the neighbor at random

Choose the neighbor that yields the most improvement

How do you define the neighborhood?

Can you think of some simple techniques for improving local search?
- Run the algorithm multiple times with some random choices!
- Independent trials.
- Combine *good* solutions.