Reductions

https://cs.pomona.edu/classes/cs140/

https://adriann.github.io/npc/npc.html
Outline

Topics and Learning Objectives

• Discuss the process of reducing one problem to another

Exercise

• None
Quick check: does $\lg(n) \in P$?
Reduction

• Instead of taking the time to mathematically prove that some algorithm/problem belongs to a certain class, we can take a shortcut.

• We can put a problem in a specific class by looking at its relative difficulty.

• [Some Problem] is as hard as [Some Other Problem].

• “The decision TSP Problem is as hard as the Hamiltonian Cycle Problem, which is NP-Hard. Therefore, decision TSP is also NP-Hard (or NP-Complete in this case since we can verify it with a polynomial time algorithm)”
Complexity Comparisons

If you want to show that problem A is “easy”, then...
you show how to solve it by turning it into a known “easy” problem B.

If you want to show that problem A is “hard”, then...
you show how it can be used to solve a known “hard” problem B.

These are called reductions.
MINIMUM K-CONNECTED SUBGRAPH

HAMiltonian completion

TRaveling Salesman
(triangle inequality)

Garey Graham Johnson
1976

Undirected Hamiltonian Circuit
A reduction involves two different problems

We can reduce problem A to problem B if

- We have a polynomial time algorithm for converting an input to problem A into an equivalent input for problem B and
- We have a polynomial time algorithm for converting an output of problem B into an output of problem A

Must take only a polynomial amount of time
A reduction involves two different problems

We can reduce problem A to problem B if

- We have a polynomial time algorithm for converting an input to problem A into an equivalent input for problem B \textbf{and}
- We have a polynomial time algorithm for converting an output of problem B into an output of problem A

If we can perform a reduction, then we can say things like

- If B is in P then A is in P
- If B is in NP-Complete then A is in NP-Complete
- B is at least as hard as A (though B might be much harder—you can always convert a problem into something that takes way more work)
Reduction Example

• We can do better than the Floyd-Warshall algorithm $O(n^3)$ for sparse graphs (even with negative edges).

• For example, a clever trick reduces the all-pairs shortest path problem to one invocation of the Bellman-Ford algorithm followed by $n - 1$ invocations of Dijkstra’s algorithm.

• This reduction, which is called Johnson’s algorithm, runs in $O(mn) + (n - 1) \cdot O(m \log n) = O(mn \log n)$.

• This is subcubic in n except when m is very close to quadratic in n.
John’s All-Pairs Shortest Path Algorithm

A Graph

Instance of A

Transform from A to B

one invocation of the Bellman-Ford algorithm followed by n - 1 invocations of Dijkstra’s algorithm

Transform from B to A

Solution to A

All-Pairs of Shortest Paths

Must take only a polynomial amount of time
Finding the Minimum Element

Instance of A

Transform from A to B

Sort the array and return the item at index 0

Transform from B to A

Solution to A

An Array

Must take only a polynomial amount of time

This is making the problem take more work than needed... But the reduction is still possible.
Reduction for NP-Complete

- Given a new problem (and algorithm) called P_{new}
- Let’s say we have an algorithm (potentially sub-optimal) to solve it, but we don’t know to what class it belongs.

- We guess that (our Theorem)

 \[
 \text{Problem } P_{\text{new}} \text{ is at least as hard as problem } P_{\text{known}}
 \]

- Reduce P_{known} to P_{new} ($P_{\text{KNOWN}} \leq_p P_{\text{NEW}}$)
 - Solve P_{known} using a polynomial number of calls to the algorithm for P_{new}
 - Reduce the **harder/known** problem to our new problem
 - In doing say we can say that we’ve either found a more efficient solution to P_{known}, or we’ve proved that P_{new} is also hard

already proven to be in NP-Complete
Example Reduction (Reduce P_{known} to P_{new})

Instance of P_{known} → Transform to P_{new} → Instance of P_{new} → Solve Instance of P_{new} → Solution to P_{new} → Transform to P_{known} → Solution to P_{known}

Must take only a polynomial amount of time

This is a new Algorithm for P_{known} and we might already know that P_{known} is NP-Hard, for example

WE ALREADY PROVED THE CHARACTERISTICS OF P_{known}, SO, WE MUST HAVE FOUND A NEW WAY TO IMPLEMENT THE SAME THING USING P_{new}
Prove two algorithms belong to the same class

P_{known} is the all-pairs shortest path problem

P_{new} is a new method for computing the shortest path from a start vertex to all other vertices

Reduce P_{known} to P_{new}

New Algorithm for P_{known}

Must take only a polynomial amount of time
Examples of Reductions

Reduce median selection to sorting.
• Finding the median value of an array of numbers is as hard as sorting the number and sorting the number can be solved in polynomial-time.
• Note: finding the median turns our to be easier than comparison-based sorting (O(n))

Reduce cycle detection to DFS
• Detecting a cycle in a graph is as hard as performing a depth first search and DFS can be done in polynomial-time.
• This is related to Kruskal’s minimum spanning tree algorithm and the union-find data structure

Reduce all pairs shortest path to single source shortest path
• Computing all pairs shortest paths is as hard as computing the shortest path from one node to every other node n times, which can be done in polynomial time.
• Invoke polynomial time algorithm “n times” is still polynomial time (just increase exponent by 1).
Full Reduction Example

The S-Independent Set Problem

- Given a graph G and a number S, is there a set of nodes of size S in G such that no two nodes in the set are directly connected in G (they are independent of each other)?
Full Reduction Example

The S-Independent Set Problem

• Given a graph G and a number S, is there a set of nodes of size S in G such that no two nodes in the set are directly connected in G (they are independent of each other)?
Full Reduction Example

The k-Clique Problem

• Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?
Full Reduction Example

The k-Clique Problem

• Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?
The k-Clique Problem

- Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?
The k-Clique Problem

- Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?
Full Reduction Example

The S-Independent Set Problem

- Given a graph G and a number S, is there a set of nodes of size S in G such that no two nodes in the set are directly connected in G (they are independent of each other)?

The k-Clique Problem

- Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?
Reduce S-Independent Set to k-Clique

The S-Independent Set Problem
Given a graph G and a number S, is there a set of nodes of size S in G such that no two nodes in the set are directly connected in G?

The k-Clique Problem
Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?

We don’t know the computational classification of k-Clique.

We do know the computational classification of S-Independent Set (NP-Complete).

How do we use S-Independent Set to find the computational classification of k-Clique?

Reduction: Reduce S-Independent Set to k-Clique.

If we can perform the reduction, then k-Clique must be as hard as S-Independent Set.
Reduce S-Independent Set to k-Clique

Instance of S-Independent Set → Transform to k-Clique → Instance of k-Clique → Solve Instance of k-Clique → Solution to k-Clique → Transform to S-Independent Set → Solution to S-Independent Set

New Algorithm for S-Independent Set

Must take only a polynomial amount of time
We want to find the S-Independent set of G.

Let’s instead find the k-Clique of H. ($k = S$)

Where H is the complement of G.
We want to find the S-Independent set of G.

G has an S-Independent set if and only if H has a k-Clique (we’re not going to prove this).

Let’s instead find the k-Clique of H. ($k = S$)

Where H is the complement of G.
We want to find the S-Independent set of G

Let $S = 4$, and thus $k = 4$

G has an S-Independent set if and only if H has a k-Clique (we’re not going to prove this)

Let’s instead find the k-Clique of H. ($k = S$)

Where H is the complement of G.

We want to find the S-Independent set of G.

Let $S = 4$, and thus $k = 4$.

G has an S-Independent set if and only if H has a k-Clique (we’re not going to prove this).

Let’s instead find the k-Clique of H. ($k = S$)

Where H is the complement of G.
We want to find the S-Independent set of G.

Let $S = 4$, and thus $k = 4$.

G has an S-Independent set if and only if H has a k-Clique (we’re not going to prove this).

Let’s instead find the k-Clique of H. ($k = S$)

Where H is the complement of G.
We want to find the S-Independent set of G

Let $S = 4$, and thus $k = 4$

G has an S-Independent set if and only if H has a k-Clique (we’re not going to prove this)

Let’s instead find the k-Clique of H. ($k = S$)

Where H is the complement of G.
We want to find the S-Independent set of G.

Let $S = 4$, and thus $k = 4$.

G has an S-Independent set if and only if H has a k-Clique (we’re not going to prove this).

Let’s instead find the k-Clique of H. ($k = S$)

Where H is the complement of G.

\[\text{G} \quad \text{H} \]
We want to find the S-Independent set of G

Let $S = 4$, and thus $k = 4$

These 4 nodes comprise a size 4 clique of H; return true

G has an S-Independent set if and only if H has a k-Clique (we’re not going to prove this)

Let’s instead find the k-Clique of H. ($k = S$)

Where H is the complement of G.
We want to find the S-Independent set of G; return true

Let $S = 4$, and thus $k = 4$

These 4 nodes comprise a size 4 independent set of G; return true

G has an S-Independent set if and only if H has a k-Clique (we’re not going to prove this)

Let’s instead find the k-Clique of H. ($k = S$)

Where H is the complement of G.

These 4 nodes comprise a size 4 clique of H; return true
Reduce S-Independent Set to k-Clique

Since the S-Independent Set Problem can be reduced to the k-Clique Problem, and the S-Independent Set Problem can be solved in polynomial time, then the k-Clique Problem can also be solved in polynomial time (or faster).

New Algorithm for S-Independent Set
Reduce S-Independent Set to k-Clique

The S-Independent Set Problem
Given a graph G and a number S, is there a set of nodes of size S in G such that no two nodes in the set are directly connected in G?

The k-Clique Problem
Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?

We don’t know the computational classification of k-Clique.
We do know the computational classification of S-Independent Set (NP-Complete).
How do we use S-Independent Set to find the computational classification of k-Clique?
Reduce S-Independent Set to k-Clique.
If we can perform the reduction, then k-Clique must be as hard as S-Independent Set.
Proving a Problem X is NP-Complete

Effectively we are trying to say that X cannot be solved in $O(n^k)$ by any known process.

1. First prove that X is in NP (it can be verified in polynomial time)

2. Next prove that X is NP-Hard
 1. Reduce some known NP-Complete or NP-Hard problem Y to X
 2. This implies that any and all NP-Complete problems can be reduced to X
 3. All NP-Complete problems have been reduced to another in an interconnected web (the original problem is known as 3SAT)
3-SAT Example