Reductions

https://cs.pomona.edu/classes/cs140/

https://adriann.github.ionpc/npc.html
Outline

Topics and Learning Objectives
• Discuss the process of reducing one problem to another

Exercise
• None
Quick check: does $\lg(n) \in P$?
Reduction

• Instead of taking the time to mathematically prove that some algorithm/problem belongs to a certain class, we can take a shortcut.

• We can put a problem in a specific class by looking at its relative difficulty.

• [Some Problem] is as hard as [Some Other Problem].

• “The decision TSP Problem is as hard as the Hamiltonian Cycle Problem, which is NP-Hard. Therefore, decision TSP is also NP-Hard (or NP-Complete in this case since we can verify it with a polynomial time algorithm)”
Complexity Comparisons

If you want to show that problem A is “easy”, then...
you show how to solve it by turning it into a known “easy” problem B.

If you want to show that problem A is “hard”, then...
you show how it can be used to solve a known “hard” problem B.

These are called reductions.
A reduction involves two different problems

We can reduce problem A to problem B if

- We have a polynomial time algorithm for converting an input to problem A into an equivalent input for problem B and
- We have a polynomial time algorithm for converting an output of problem B into an output of problem A

Must take only a polynomial amount of time
A reduction involves two different problems

We can reduce problem A to problem B if

• We have a polynomial time algorithm for converting an input to problem A into an equivalent input for problem B and

• We have a polynomial time algorithm for converting an output of problem B into an output of problem A

If we can perform a reduction, then we can say things like

• If B is in P then A is in P

• If B is in NP-Complete then A is in NP-Complete

• B is at least as hard as A (though B might be much harder—you can always convert a problem into something that takes way more work)
Reduction Example

• We can do better than the Floyd-Warshall algorithm $O(n^3)$ for sparse graphs (even with negative edges).

• For example, a clever trick reduces the all-pairs shortest path problem to one invocation of the Bellman-Ford algorithm followed by $n - 1$ invocations of Dijkstra’s algorithm.

• This reduction, which is called Johnson’s algorithm, runs in $O(mn) + (n - 1) \cdot O(m \log n) = O(mn \log n)$.

• This is subcubic in n except when m is very close to quadratic in n.
John’s All-Pairs Shortest Path Algorithm

- Transform from A to B
- One invocation of the Bellman-Ford algorithm followed by n - 1 invocations of Dijkstra’s algorithm
- Transform from B to A
- Solution to A

A Graph

Instance of A

Must take only a polynomial amount of time

All-Pairs of Shortest Paths
Finding the Minimum Element

Instance of A

An Array

Transform from A to B

Sort the array and return the item at index 0

Transform from B to A

Solution to A

Minimum Element

Must take only a polynomial amount of time

This is making the problem take more work than needed... But the reduction is still possible.

An Array

Must take only a polynomial amount of time

Transform from A to B

Sort the array and return the item at index 0

Transform from B to A

Solution to A

Minimum Element

Finding the Minimum Element
Reduction for NP-Complete

• Given a new problem (and algorithm) called \(P_{\text{new}} \)
• Let’s say we have an algorithm (potentially sub-optimal) to solve it, but we don’t know to what class it belongs.

• We guess that (our Theorem)
 \[
 \text{Problem } P_{\text{new}} \text{ is at least as hard as problem } P_{\text{known}}
 \]

• Reduce \(P_{\text{known}} \) to \(P_{\text{new}} \) (\(P_{\text{KNOW}} \leq_p P_{\text{NEW}} \))
 • Solve \(P_{\text{known}} \) using a polynomial number of calls to the algorithm for \(P_{\text{new}} \)
 • Reduce the harder/known known problem to our new problem
 • In doing say we can say that we’ve either found a more efficient solution to \(P_{\text{known}} \), or we’ve proved that \(P_{\text{new}} \) is also hard
Example Reduction (Reduce P_{known} to P_{new})

Instance of P_{known} \rightarrow Transform to P_{new} \rightarrow Instance of P_{new} \rightarrow Solve Instance of P_{new} \rightarrow Solution to P_{new} \rightarrow Transform to P_{known} \rightarrow Solution to P_{known}

Our new Algorithm for P_{new}

Must take only a polynomial amount of time

This is a new Algorithm for P_{known} and we might already know that P_{known} is NP-Hard, for example

WE ALREADY PROVED THE CHARACTERISTICS OF P_{known} SO, WE MUST HAVE FOUND A NEW WAY TO IMPLEMENT THE SAME THING USING P_{new}
Prove two algorithms belong to the same class

\(P_{\text{known}} \) is the all-pairs shortest path problem

\(P_{\text{new}} \) is a new method for computing the shortest path from a start vertex to all other vertices

Reduce \(P_{\text{known}} \) to \(P_{\text{new}} \)

Our new Algorithm for \(P_{\text{new}} \)

Solve Instance of \(P_{\text{new}} \)

Transform to \(P_{\text{known}} \)

Solution to \(P_{\text{known}} \)

Instance of \(P_{\text{known}} \)

Transform to \(P_{\text{new}} \)

Instance of \(P_{\text{new}} \)

Must take only a polynomial amount of time

New Algorithm for \(P_{\text{known}} \)
Examples of Reductions

Reduce median selection to sorting.
- Finding the median value of an array of numbers is as hard as sorting the number and sorting the number can be solved in polynomial-time.
- Note: finding the median turns our to be easier than comparison-based sorting (O(n))

Reduce cycle detection to DFS
- Detecting a cycle in a graph is as hard as performing a depth first search and DFS can be done in polynomial-time.
- This is related to Kruskal’s minimum spanning tree algorithm and the union-find data structure

Reduce all pairs shortest path to single source shortest path
- Computing all pairs shortest paths is as hard as computing the shortest path from one node to every other node n times, which can be done in polynomial time.
- Invoke polynomial time algorithm “n times” is still polynomial time (just increase exponent by 1).
Full Reduction Example

The S-Independent Set Problem

• Given a graph G and a number S, is there a set of nodes of size S in G such that no two nodes in the set are directly connected in G (they are independent of each other)?

![Graph G with $S = 3$]
Full Reduction Example

The S-Independent Set Problem

• Given a graph G and a number S, is there a set of nodes of size S in G such that no two nodes in the set are directly connected in G (they are independent of each other)?
Full Reduction Example

The k-Clique Problem

• Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?
Full Reduction Example

The k-Clique Problem

• Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?
Full Reduction Example

The \textit{k-Clique Problem}

• Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?
Full Reduction Example

The k-Clique Problem

• Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?
Full Reduction Example

The S-Independent Set Problem

• Given a graph G and a number S, is there a set of nodes of size S in G such that no two nodes in the set are directly connected in G (they are independent of each other)?

The k-Clique Problem

• Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?
Reduce *S*-Independent Set to *k*-Clique

The *S*-Independent Set Problem
Given a graph G and a number S, is there a set of nodes of size S in G such that no two nodes in the set are directly connected in G?

The *k*-Clique Problem
Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?

We don’t know the computational classification of *k*-Clique.
We **do** know the computational classification of *S*-Independent Set (NP-Complete).
How do we use *S*-Independent Set to find the computational classification of *k*-Clique?
Reduce *S*-Independent Set to *k*-Clique.
If we can perform the reduction, then *k*-Clique must be as hard as *S*-Independent Set.
Reduce S-Independent Set to k-Clique

Instance of S-Independent Set

Transform to k-Clique

Instance of k-Clique

Solve Instance of k-Clique

Solution to k-Clique

Transform to S-Independent Set

Solution to S-Independent Set

New Algorithm for S-Independent Set

Must take only a polynomial amount of time
We want to find the S-Independent set of G.

Let’s instead find the k-Clique of H. ($k = S$)

Where H is the complement of G.
We want to find the S-Independent set of G.

G has an S-Independent set if and only if H has a k-Clique (we’re not going to prove this).

Let’s instead find the k-Clique of H. ($k = S$)

Where H is the complement of G.
We want to find the S-Independent set of G.

Let $S = 4$, and thus $k = 4$.

G has an S-Independent set if and only if H has a k-Clique (we’re not going to prove this).

Let’s instead find the k-Clique of H. ($k = S$)

Where H is the complement of G.
We want to find the S-Independent set of G

Let $S = 4$, and thus $k = 4$

G has an S-Independent set if and only if H has a k-Clique (we’re not going to prove this)

Let’s instead find the k-Clique of H. ($k = S$)

Where H is the complement of G.
We want to find the S-Independent set of G

Let $S = 4$, and thus $k = 4$

G has an S-Independent set if and only if H has a k-Clique (we’re not going to prove this)

Let’s instead find the k-Clique of H. ($k = S$)

Where H is the complement of G.
We want to find the S-Independent set of G

Let $S = 4$, and thus $k = 4$

G has an S-Independent set if and only if H has a k-Clique
(we’re not going to prove this)

Let’s instead find the k-Clique of H. ($k = S$)

Where H is the complement of G.
We want to find the S-Independent set of G

Let $S = 4$, and thus $k = 4$

G has an S-Independent set if and only if H has a k-Clique (we’re not going to prove this)

Let’s instead find the k-Clique of H. ($k = S$)

Where H is the complement of G.
Let $S = 4$, and thus $k = 4$.

We want to find the S-Independent set of G.

G has an S-Independent set if and only if H has a k-Clique (we’re not going to prove this).

Let’s instead find the k-Clique of H. ($k = S$).

Where H is the complement of G.

These 4 nodes comprise a size 4 clique of H; return true.
We want to find the S-Independent set of G; return true

Let $S = 4$, and thus $k = 4$

These 4 nodes comprise a size 4 independent set of G; return true

We have G has an S-Independent set if and only if H has a k-Clique (we’re not going to prove this)

Let’s instead find the k-Clique of H. ($k = S$)

These 4 nodes comprise a size 4 clique of H; return true

Where H is the complement of G.
Reduce S-Independent Set to k-Clique

Since the S-Independent Set Problem can be reduced to the k-Clique Problem, and the S-Independent Set Problem is NP-Complete, then the k-Clique Problem is also NP-Complete.
Reduce S-Independent Set to k-Clique

The S-Independent Set Problem
Given a graph G and a number S, is there a set of nodes of size S in G such that no two nodes in the set are directly connected in G?

The k-Clique Problem
Given a graph G and a number k, is there a set of nodes of size k in G such that all nodes are directly connected with one another?

We don’t know the computational classification of k-Clique.
We do know the computational classification of S-Independent Set (NP-Complete).
How do we use S-Independent Set to find the computational classification of k-Clique?
Reduce S-Independent Set to k-Clique.
If we can perform the reduction, then k-Clique must be as hard as S-Independent Set.
Proving a Problem X is NP-Complete

Effectively we are trying to say that X cannot be solved in $O(n^k)$ by any known process.

1. First prove that X is in NP (it can be verified in polynomial time)

2. Next prove that X is NP-Hard
 1. Reduce some known NP-Complete or NP-Hard problem Y to X
 2. This implies that any and all NP-Complete problems can be reduced to X
 3. All NP-Complete problems have been reduced to another in an interconnected web (the original problem is known as 3SAT)
3-SAT Example