Huffman Codes

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives

• Introduce Huffman Codes for compression

Exercise

• None
Extra Resources

• Algorithms Illuminated Part 3, Chapter 14
Huffman Codes

• This will be our final greedy algorithm / application
• Huffman Codes are used for compression

• In general they can be thought of as:
 • A mapping of some set of characters/symbols to binary strings

• For example: let’s encode the letters [a-z] and {., ?, !, ;, :}.
• How many bits would you use?
• Does this type of encoding sound familiar at all?
Huffman Codes

• In general we use Σ to represent the set of characters
• Let Σ = {A, B, C, D}
• What is one possible binary encoding?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
<td>01</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

• How many bits does it take to store 100 characters?
Huffman Codes

Can we do better than this fixed-length encoding (use fewer bits)?

<table>
<thead>
<tr>
<th>Σ</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Encoding</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>(Bad) Variable Encoding</td>
<td>0</td>
<td>01</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

What does the string 001 encode?

- AB
- CD
- AAD

001

101

001
Huffman Codes

The problem with this encoding is called **prefixing**.

<table>
<thead>
<tr>
<th>$\Sigma =$</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Encoding</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>(Bad) Variable Encoding</td>
<td>0</td>
<td>01</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

- This is **not** a prefix-free encoding.
- Problem: we don’t know where one character ends and the next begins.
- Solution: ensure that the encoding is **prefix-free**.
Example Prefix-Free Encoding

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Prefix-free</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example Prefix-Free Encoding

<table>
<thead>
<tr>
<th>Symbol</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Encoding</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Prefix-free Encoding</td>
<td>0</td>
<td>10</td>
<td>110</td>
<td>111</td>
</tr>
</tbody>
</table>

Now, we know exactly when one character ends and another starts.

Why would this be a good idea?

- What if we needed to store a bunch of A’s but only a few C’s?
Example Prefix-Free Encoding

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Encoding</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Prefix-free Encoding</td>
<td>0</td>
<td>10</td>
<td>110</td>
<td>111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>60%</th>
<th>25%</th>
<th>10%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What are the average bit lengths for these two encodings?
Discovering the Best Encoding

Let’s think of Huffman Codes as trees. $\Sigma = A, B, C, D$

Fixed Encoding
{00,01,10,11}

First Variable Encoding
{0,01,10,1}

Prefix-Free Encoding
{0,10,110,111}
Huffman Codes as Trees

• Go to left child on a ‘0’
• Go to right child on a ‘1’
• For each symbol in Σ, exactly one node should be labeled x
• Prefix-free encoding require all labeled nodes to be leaves
• Trees are just a tool for helping us construct optimal encodings
• Decode: follow the input string until you reach a leaf
• Encode(x): the path followed from the root to x
• The encoding length of x is the same as its depth
Decode the string: 0110111
Huffman Codes

Problem: *how do we choose/design our encodings?*

- Input: a set of symbols \(\Sigma \) and their probabilities/frequencies \(p_i \)
- Notation: if \(T \) is a tree with leaves as symbols of \(\Sigma \), then let
 \[
 L(T) = \sum_{i=1}^{|\Sigma|} p_i \cdot \text{depth}_i
 \]
- \(L(T) \) is the average encoding length
- The output of our algorithm will be a binary tree \(T \) that minimizes \(L(T) \)
Huffman’s Algorithm (compression)

Huffman’s approach is the start at the leaves and build the the tree bottom-up
Which Tree is Better?

It depends on the frequencies!
Huffman’s Algorithm

• We’re building from the leaves up.
• How do we know which two symbols we should merge?
• How does the final encoding length of a given symbol in \(\Sigma \) relate to the number of merges it experiences?

• Each merge adds one node to the path from the root to \(x \)!
• So, how do we minimize the weighted average encoding length?
• Huffman’s Greedy Criteria: Merge the least frequent characters first.
How do we compare nodes after a merge?

Iteration 1

A: 0.6
B: 0.2
C: 0.15
D: 0.05

Iteration 2

A: 0.6
B: 0.2
CD: ??

Options:

a) $p_c + p_d$

b) $\text{Min}[p_c, p_d]$

c) $\text{Max}[p_c, p_d]$

d) $p_c \times p_d$
FUNCTION Huffman(symbols, frequencies)

forest = [(f, s) FOR f, s IN Zip(symbols, frequencies)]
heapifyMin(forest)

WHILE forest.length ≥ 2
 treeA = extract_min(forest)
 treeB = extract_min(forest)
 treeMerged = merge(treeA, treeB)
 heap_add(forest, treeMerged)

Only one tree remaining in forest
RETURN forest[0]
FUNCTION Huffman(symbols, frequencies)

forest = [(f, s) FOR f, s IN Zip(symbols, frequencies)]
heapifyMin(forest)

WHILE forest.length ≥ 2
 treeA = extract_min(forest)
 treeB = extract_min(forest)
 treeMerged = merge(treeA, treeB)
 heap_add(forest, treeMerged)

Only one tree remaining in forest
RETURN forest[0]

<table>
<thead>
<tr>
<th>Σ =</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>P =</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>
FUNCTION Huffman(symbols, frequencies)

forest = [(f, s) FOR f, s IN Zip(symbols, frequencies)]
heapifyMin(forest)

WHILE forest.length ≥ 2
 treeA = extract_min(forest)
 treeB = extract_min(forest)
 treeMerged = merge(treeA, treeB)
 heap_add(forest, treeMerged)

Only one tree remaining in forest
RETURN forest[0]

What is the running time?

Note: faster algorithms do exist for this problem
Correctness Proof

Theorem: Huffman’s algorithm computes a binary tree that minimizes the average encoding length of all symbols

\[L(T) = \sum_{i=1}^{\mid \Sigma \mid} p_i \cdot \text{depth}_i \]

Strategy:
- Induction
- Exchange argument

Proof by induction that \(P(n) \) holds for all \(n \)
- **Base Case:** \(P(1) \) holds because ...
- **Inductive Hypothesis:** Let’s assume that \(P(k) \) holds, where \(k < n \)
- **Inductive Step:** \(P(n) \) holds because of \(P(k) \) and ...
- Thus, by induction, \(P(n) \) holds for all \(n \)
Inductive Proof

Base Case:
• If \(n = 1 \) or \(n = 2 \) there is only one option for average encoding length
• Thus the base cases are trivially true

Inductive Hypothesis:
• Huffman’s algorithm produces the optimal coding with \(\leq k \) symbols where \(k < n \)

Inductive Step...
Main Ideas for Inductive Step

Let symbols \emptyset and π be the symbols with the smallest and second smallest frequencies, respectively

1. Huffman’s Algorithm outputs the optimal tree in which \emptyset and π are siblings
 • Out of all possible trees where \emptyset and π are siblings

2. The optimal tree is the one in which \emptyset and π are siblings
 • Out of all possible trees in general
Part 1

Huffman’s outputs the optimal tree in which ϕ and π are siblings

• After combining symbols ϕ and π into a single “$\phi\pi$” symbol we have reduced the total number of symbols by 1

• Given our inductive hypothesis, we know that Huffman’s algorithm outputs the optimal tree for k symbols where $k < n$

• Thus, Huffman’s outputs the optimal tree after combining ϕ and π
The optimal tree is the one in which ϕ and π are siblings

- Consider the case where ϕ and π are not siblings
- And we then exchange ϕ and π with two nodes that are siblings
- The average encoding length goes down (or stays the same)!
Summary

• Prefix-free, variable-length binary codes have smaller average encoding lengths (per symbol) than fixed-length codes

• These Huffman Codes can be visualized as a binary tree

• Huffman’s Algorithm works by greedily combining trees in the forest until you are left with a single tree in $O(n \log n)$ time

• We proved correctness with induction and an exchange argument