Kruskal’s MST Algorithm

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives

• Introduce Kruskal’s algorithms for MSTs
• Discuss disjoint sets

Exercise

• Kruska’s exercise
Trick Question for the Day

Which is asymptotically bigger?

\[O(m \lg n) \text{ or } O(m \lg m) \]
Minimum-Spanning-Tree Overview

Input: an undirected graph where each edge has an associated cost

Output: a minimum-spanning-tree
1. Connects the entire graph as a tree, but
2. Has a minimal cost

Assumptions:
1. The input graph is connected
2. The edges costs are distinct (only necessary/useful for our proof)

Cut Property: if e is the cheapest edge crossing a cut, then it must be in the MST
Kruskal’s

A greedy algorithm for finding the minimum spanning tree

Why are we learning another one?
• Kruskal’s will motivate a new data structure: Union-Find (disjoint-set)
• It will also let us talk a bit about clustering

Can you think of another greedy algorithm for solving MST?
Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

$T = \text{empty}$

For e in E:

if $T \cup \{e\}$ has no cycles

add e to T
Exercise question 1.

1. In what order are the edges selected using Kruskal’s Algorithm?
Proof of Kruskal’s Algorithm

Theorem: Kruskal’s algorithm is correct (computes the MST)

Let T^* = the output of Kruskal’s algorithm
Graph/Cut/Tree Lemmas and Properties

• **Empty Cut Lemma**: a graph is not connected if there exists a cut \((A, B)\) with zero crossing edges

• **Double Crossing Lemma**: suppose the cycle \(C\) has an edge crossing the cut \((A, B)\), then there must be at least one more edge in \(C\) that crosses the cut

• **No Cycle Corollary**: if \(e\) is the only edge crossing some cut \((A, B)\), then it is not in any cycle

• **Cut Property**: if \(e\) is the cheapest edge that crosses the cut \((A, B)\) then it must be in the MST
Proof of Kruskal’s Algorithm

Theorem: Kruskal’s algorithm is correct (computes the MST)
Let T^* = the output of Kruskal’s algorithm

Does Kruskal’s output a spanning tree (what are the properties)?
• No cycles
• Connected
Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost
$T = \text{empty}$

For e in E:
 if $T \cup \{e\}$ has no cycles
 add e to T
Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost
T = empty

For e in E:
 if T U \{e\} has no cycles
 add e to T
Proof of Kruskal’s Algorithm

Theorem: Kruskal’s algorithm is correct (computes the MST)
Let T^* = the output of Kruskal’s algorithm

Does Kruskal’s output a spanning tree (what are the properties)?
• No cycles (this is given by the definition of the algorithm)
• Connected
Proof of Kruskal’s Algorithm

Proof of Connectivity

• Given the Empty Cut Lemma, we only need to show that Kruskal’s produces a tree T^* that crosses every cut.

• Fix a cut (A,B)
• Since G is connected, at least one of its edges crosses (A,B)
• Kruskal’s algorithm considers each edge once
• Let’s fast-forward to the first time that it encounters an edge crossing (A,B)
• Claim: this 1st edge is guaranteed to be in T^*
• Given the No Cycle Corollary the claim is true
• It is also the minimum edge to cross the cut (sorted edges)
Proof of Kruskal’s Algorithm

For the second part of the proof, we need to prove that T^* is minimal
- We just finished proving that Kruskal’s outputs some spanning tree T^*

Claim: every edge is justified by the Cut Property
- Remember that satisfying the Cut Property implies that we have an MST
- This was very explicit in Prim’s Algorithm
Prim’s Minimum Spanning Tree Algorithm

X = \{s\}
T = empty

while X is not V:
 let e = (u, v) be the cheapest edge of G
 with u in X and v not in X
 add e to T
 add v to X
Proof of Kruskal’s Algorithm

Proving that we can use the **Cut Property**

- Consider each iteration where edge \((u, v)\) is added to \(T^*\).
- Since \(T^* \cup \{(u, v)\}\) has no cycle, \(T^*\) currently has no \(u\)-\(v\) path.
- Thus, there must be a cut \((A, B)\) separating \(u\) and \(v\). For example:
 - All findable from \(u\) in \(A\).
 - All findable from \(v\) in \(B\).
 - All other vertices can be partitioned arbitrarily.
- Hence, \((u, v)\) is the first crossing cut for \((A, B)\).
- Additionally, it must be the cheapest such cut since we sorted the edges.
- Finally, the edge \((u, v)\) is justified by the **Cut Property**.
Proof of Kruskal’s Algorithm

What have we done?

We proved that Kruskal’s outputs a spanning tree
• No cycles by definition
• Connectivity by the Empty Cut Lemma

We then proved that Kruskal’s outputs the minimum spanning tree
• The Cut Property implies that we are left with the MST
• We showed that Kruskal’s uses the Cut Property because the edges are sorted
Implementation of Kruskal’s
Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost $O(m \lg m)$

$T = \text{empty}$

For e in E: $O(m)$

if $T \cup \{e\}$ has no cycles Naïvely $O(n + m)$

add e to T

$O(m \lg m) + O(m) \times O(n+m)$

$O(mn+m^2)$
Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost
$T = \text{empty}$

For e in E:
 if $T \cup \{e\}$ has no cycles
 add e to T

What can we change (should we change) to do better than $O(mn)$?
The Union-Find Data Structure

• Also known as the disjoint-set data structure
• Used to maintain a partition of objects
Union-Find

Operations:
- **Find(x):** return the name of the group to which x belongs
- **Union(Ci, Cj):** merge the two partitions into a single partition
How does this help us with Kruskal’s?

• What do we store in the data structure?
• What makes a group/partition?
Kruskal’s Minimum Spanning Tree Algorithm

Sort \(E \) by edge cost
\(T = \) empty

For \(e \) in \(E \):
 if \(T \cup \{e\} \) has no cycles
 add \(e \) to \(T \)

\(\mathcal{O}(m) \)

Naïvely \(\mathcal{O}(n + m) \)
Motivation

• Speed up the way in which we check for cycles.
• How would you implement the Union-Find data structure?
• Conceptually, we’re going to augment each vertex to include another piece of information: the name of its leader

• Invariant: each vertex points to its leader

• How long does it take to check for a cycle now?
Checking for cycles

- Given an edge (u, v), we can check if u and v are in the same partition in constant time $O(1)$.

$$\text{Find}(u) == \text{Find}(v)?$$

What happens during the next iteration?

What’s the catch?
Maintaining the Invariant

- **Invariant:** each vertex points to its leader

What is the maximum number of vertex leaders that must be fixed after a union?

Exercise Question 2
Union example.
Union-Find Data Structure

• Put every element in its own partition
 • Every element has its own leader

• Join partitions by copying the leader of the larger partition elements to all elements of the smaller partition

• You can use an array or hash table to keep track of leaders

• No other information/memory is needed
Kruskal’s Minimum Spanning Tree Algorithm

Sort \(E \) by edge cost
\(T = \text{empty} \)

For e in E:
 if \(T \cup \{e\} \) has no cycles
 add e to T
 union

What do we have as a running time now?
What happened?

Sort E by edge cost
$T = \text{empty}$

For e in E:

if $T \cup \{e\}$ has no cycles

add e to T

union

We don’t do this every iteration

$O(n+m) \rightarrow O(1)$ (checking leaders)

$O(1) \rightarrow O(n)$ (updating leaders)
Maximum number of leader updates?

How many times can we update the leader of a single vertex?
• We only update the leader of a vertex if we merge it with a bigger partition.
• How many times can we update a vertex’s leader?
 • (Or: How many times can we double the size of a partition?)

This is our global view of something happening inside the loop.
Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost $O(m \log m)$

$T = \emptyset$

For e in E: $O(m)$

if $T \cup \{e\}$ has no cycles $O(1)$ just for the cycle check

add e to T $O(n \log n)$ for Union (not per iteration)

union

Technically this is $O(n \log n + m \log m)$
Cutting Edge

• Can we do better than $O(m \lg n)$?
 • Yes!

 • **Average** $O(m)$ using a randomized algorithm (1995)
 • We do not actually know if a deterministic $O(m)$ algorithm exists.
 • We do have a deterministic algorithm that is $O(m \alpha(n))$
 • α is the inverse Ackermann function

 • Which is slower than the **Iterated logarithm: \lg^***
 • the number of times the logarithm function must be iteratively applied before the result is less than or equal to 1

 • An optimal deterministic algorithm was developed in 2002
 • But we do not know the exact asymptotic complexity
 • Just that it is between $O(m)$ and $O(m \alpha(n))$