Huffman Codes

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives
• Introduce Huffman Codes for compression

Exercise
• None
Huffman Codes

• This will be our final greedy algorithm / application
• Huffman Codes are used for compression

• In general they can be thought of as:
 • A mapping of some set of characters/symbols to binary strings

• For example: let’s encode the letters [a-z] and {., ?, !, ;, :}.
• How many bits would you use?
• Does this type of encoding sound familiar at all?

ASCII

\[
\begin{align*}
 a &= 000000 \\
 b &= 00001 \\
 c &= 11111 \\
 d &= 001 \\
 e &= 100 \\
 f &= 110 \\
 g &= 111 \\
 26 + 5 + 11 &= 42 = 32 \\
 2^5 &= 32 \quad \text{5 bits}
\end{align*}
\]
Huffman Codes

• In general we use Σ to represent the set of characters
• Let $\Sigma = \{A, B, C, D\}$
• What is one possible binary encoding?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

• How many bits does it take to store 100 characters?

$$2 \cdot 100 = 200 \text{ bits}$$
Huffman Codes

Can we do better than this *fixed-length* encoding (use fewer bits)?

<table>
<thead>
<tr>
<th>Σ =</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Encoding</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>(Bad) Variable Encoding</td>
<td>0</td>
<td>01</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

What does the string 001 encode?

- AB
- CD
- AAD

001

001
Huffman Codes

The problem with this encoding is called **prefixing**.

<table>
<thead>
<tr>
<th>$\Sigma =$</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Encoding</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>(Bad) Variable Encoding</td>
<td>0</td>
<td>01</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

• This is **not** a **prefix-free** encoding.
• Problem: we don’t know where one character ends and the next begins.
• Solution: ensure that the encoding is **prefix-free**.
Example Prefix-Free Encoding

<table>
<thead>
<tr>
<th>$\Sigma =$</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Encoding</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Prefix-free Encoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example Prefix-Free Encoding

<table>
<thead>
<tr>
<th>Σ =</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Encoding</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Prefix-free Encoding</td>
<td>0</td>
<td>10</td>
<td>110</td>
<td>111</td>
</tr>
</tbody>
</table>

Now, we know exactly when one character ends and another starts.

Why would this be a good idea?
• What if we needed to store a bunch of A’s but only a few C’s?
Example Prefix-Free Encoding

<table>
<thead>
<tr>
<th>Σ</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Encoding</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Prefix-free Encoding</td>
<td>0</td>
<td>10</td>
<td>110</td>
<td>111</td>
</tr>
<tr>
<td>Frequency</td>
<td>60%</td>
<td>25%</td>
<td>10%</td>
<td>5%</td>
</tr>
</tbody>
</table>

What are the average bit lengths for these two encodings?

\[1.6 \times 0.60 + 2 \times 0.25 + 3 \times 0.10 = 1.55\]
Discovering the Best Encoding

Let’s think of Huffman Codes as trees.

\[\Sigma = A, B, C, D \]

Fixed Encoding
\{00, 01, 10, 11\}

First Variable Encoding
\{0, 01, 10, 1\}

Prefix-Free Encoding
\{0, 10, 110, 111\}
Huffman Codes as Trees

• Go to left child on a ‘0’
• Go to right child on a ‘1’
• For each symbol in \(\Sigma \), exactly one node should be labeled \(x \)
• Prefix-free encoding require all labeled nodes to be leaves
• Trees are just a tool for helping us construct optimal encodings
• Decode: follow the input string until you reach a leaf
• Encode(\(x \)): the path followed from the root to \(x \)
• The encoding length of \(x \) is the same as its depth
Decode the string: 0110111

A

B

C

D
Huffman Codes

Problem: how do we choose/design our encodings?

• Input: a set of symbols Σ and their probabilities/frequencies p_i
• Notation: if T is a tree with leaves as symbols of Σ, then let

$$L(T) = \sum_{i=1}^{\left|\Sigma\right|} p_i \cdot \text{depth}_i$$

• $L(T)$ is the average encoding length
• The output of our algorithm will be a binary tree T that minimizes $L(T)$
Huffman’s Algorithm (compression)

Huffman’s approach is the start at the leaves and build the the tree bottom-up
Which Tree is Better?

It depends on the frequencies!
Huffman’s Algorithm

• We’re building from the leaves up.
• How do we know which two symbols we should merge?
• How does the final encoding length of a given symbol in Σ relate to the number of merges it experiences?

• Each merge adds one node to the path from the root to x!
• So, how do we minimize the weighted average encoding length?
• Huffman’s Greedy Criteria: Merge the least frequent characters first.
How do we compare nodes after a merge?

Iteration 1
- A: 0.6
- B: 0.2
- C: 0.15
- D: 0.05

Iteration 2
- A: 0.6
- B: 0.2
- CD: ??

Options for comparison:
- a) \(p_c + p_d \)
- b) \(\min(p_c, p_d) \)
- c) \(\max(p_c, p_d) \)
- d) \(p_c \times p_d \)
FUNCTION Huffman(symbols, frequencies)

forest = [(f, s) FOR f, s IN Zip(symbols, frequencies)]
heapifyMin(forest)

WHILE forest.length ≥ 2
 treeA = extract_min(forest)
 treeB = extract_min(forest)
 treeMerged = merge(treeA, treeB)
 heap_add(forest, treeMerged)

Only one tree remaining in forest
RETURN forest[0]
FUNCTION Huffman(symbols, frequencies)

forest = [(f, s) FOR f, s IN Zip(symbols, frequencies)]
heapifyMin(forest)

WHILE forest.length ≥ 2
 treeA = extract_min(forest)
 treeB = extract_min(forest)
 treeMerged = merge(treeA, treeB)
 heap_add(forest, treeMerged)

Only one tree remaining in forest
RETURN forest[0]

Σ = A B C D E F
P = 3 2 6 8 2 6

0 0 0 0 7 0 1 0 1 0 0 1 1 1 1
FUNCTION Huffman(symbols, frequencies)

forest = [(f, s) FOR f, s IN Zip(symbols, frequencies)]
heapifyMin(forest)

WHILE forest.length ≥ 2
 treeA = extract_min(forest)
 treeB = extract_min(forest)
 treeMerged = merge(treeA, treeB)
 heap_add(forest, treeMerged)

Only one tree remaining in forest
RETURN forest[0]
Correctness Proof

Theorem: Huffman’s algorithm computes a binary tree that minimizes the average encoding length of all symbols

\[L(T) = \sum_{i=1}^{\left| \Sigma \right|} p_i \cdot \text{depth}_i \]

Strategy:
- Induction
- Exchange argument

Proof by induction that P(n) holds for all n
- **Base Case:** P(1) holds because ...
- **Inductive Hypothesis:** Let’s assume that P(k) holds, where k < n
- **Inductive Step:** P(n) holds because of P(k) and ...
- **Thus, by induction, P(n) holds for all n**
Inductive Proof

Base Case:
• If \(n = 1 \) or \(n = 2 \) there is only one option for average encoding length
• Thus the base cases are trivially true

Inductive Hypothesis:
• Huffman’s algorithm produces the optimal coding with \(\leq k \) symbols where \(k < n \)

Inductive Step...
Main Ideas for Inductive Step

Let symbols \emptyset and π be the symbols with the smallest and second smallest frequencies, respectively

1. Huffman’s Algorithm outputs the optimal tree in which \emptyset and π are siblings
 • Out of all possible trees where \emptyset and π are siblings

2. The optimal tree is the one in which \emptyset and π are siblings
 • Out of all possible trees in general

Exchange
Part 1

Huffman’s outputs the optimal tree in which \varnothing and π are siblings

- After combining symbols \varnothing and π into a single $\varnothing\pi$ symbol we have reduced the total number of symbols by 1

- Given our inductive hypothesis, we know that Huffman’s algorithm outputs the optimal tree for k symbols where $k < n$

- Thus, Huffman’s outputs the optimal tree after combining \varnothing and π
Part 2

The optimal tree is the one in which \emptyset and π are siblings

- Consider the case where \emptyset and π are not siblings
- And we then exchange \emptyset and π with two nodes that are siblings
- The average encoding length goes down (or stays the same)!
Summary

- Prefix-free, variable-length binary codes have smaller average encoding lengths (per symbol) than fixed-length codes.

- These Huffman Codes can be visualized as a binary tree.

- Huffman’s Algorithm works by greedily combining trees in the forest until you are left with a single tree in $O(n \log n)$ time.

- We proved correctness with induction and an exchange argument.