Universal Hashing

https://cs.pomona.edu/classes/cs140/
Hash Tables

Operations:
• Insert
• Delete
• Look-up

Guaranteed constant running time for those operations if:
1. If the hash table is properly implemented, and
2. The data is non-pathological.
Hash Table Load

\[\alpha := \frac{\text{# of objects in the hash table}}{\text{# of buckets}} \]

• What is the maximum possible \(\alpha \) for separate chaining?

• What is the maximum possible \(\alpha \) for open addressing?
Hash Table Load

\[\alpha := \frac{\text{# of objects in the hash table}}{\text{# of buckets}} \]

1. \(\alpha = O(1) \) is necessary to ensure that hash table operations happen in constant time

2. For open addressing, you typically need \(\alpha \ll 1 \) \(\text{0.75 is rule of thumb} \)

• Thus, for good hash table performance you must control the load
• How do you control the load?
Pathological Data Sets

• We want our hash functions to “spread-out” the data (i.e., minimize collisions)

• Unfortunately, no perfect hash function exists (it’s impossible)

• You can create a pathological data set for any hash function
Fix (set) the hash function $h(x) \rightarrow \{0, 1, ..., n-1\}$, where n is the number of buckets in the hash table and $n << |U|$

With the pigeonhole principle, there must exist a bucket i, such that at least $|U|/n$ elements of U hash to i under h.
Pathological Data Set Example

• We want to store student ID numbers in a hash table.

• We will store about 30 students worth of data

• Let’s use a hash table with 87 buckets

• Let’s use the final three numbers as the hash
s = 30
n = 87

```python
def hash_fcn(id_number):
    return id_number % n

id_numbers = [randint(1000000, 9999999) for _ in range(s)]
hash_values = map(hash_fcn, id_numbers)
print('Number of unique student IDs:', len(set(id_numbers)))
print('Number of unique hash values:', len(set(hash_values)))

id_numbers_pathological = [round(num, -2) for num in id_numbers]
hash_values_pathological = map(hash_fcn, id_numbers_pathological)
print('Number of unique student IDs:', len(set(id_numbers_pathological)))
print('Number of unique hash values:', len(set(hash_values_pathological)))
```

Output:
Number of unique student IDs: 30
Number of unique hash values: 28

Number of unique student IDs: 30
Number of unique hash values: 1
Real World Pathological Data

• Denial of service attack

• A study in 2003 found that they could interrupt the service of any server with the following attributes:

 1. The server used an open-source hash table
 2. The hash table uses an easy-to-reverse-engineer hash function

• How does reverse engineering the hash function help an attacker?
Solutions to Pathological Data

Use a cryptographic hash function

• Infeasible to create pathological data for such a function (but not theoretically impossible)

Use randomization (Can still be an open-source implementation!)
1. Create a family of hash functions
2. Randomly pick one at runtime
Universal Hashing

Let \(H \) be a set of hash functions mapping \(U \) to \(\{0, 1, ..., n-1\} \)

The family \(H \) is **universal** if and only if for all \(x, y \) in \(U \)

\[
\Pr(h(x) = h(y)) \leq 1/n
\]

where \(h \) is chosen uniformly at random from \(H \)

Basically, the hash functions don’t all have the same flaw where they map a set of inputs to the same bucket.
Example: Hashing IP Addresses

• What is \(U \)? And how big is \(U \)?

• \(U \) includes all IP addresses, which we’ll denote as 4-tuples
 example: \(X = (x_1, x_2, x_3, x_4) \) where \(x_i \) is in \([0, 255]\)

• Let \(n \) = some prime number that is near a multiple of the number of objects we expect to store
 example: \(|S| = 500\), we set \(n = 997 \)

• Let \(H \) be our set of hash functions
 example: \(h(x) = A \cdot X \mod n = (a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4) \mod n \)
 where \(A = (a_1, a_2, a_3, a_4) \) and \(a_i \) is in \([0, n-1]\)
 \(H \) includes all combinations the coefficients in \(A \)

\[
|U| = 2^{32} = 256^4 = 4,294,967,296
\]

\[
|H| = n^4 = 988 \text{ billion}
\]
n = 997

```python
def ip_hash_fcn(X, A):
    return sum([x * a for x, a in zip(X, A)]) % n

ip_address = [randrange(256) for _ in range(4)] # i.e., 192.168.3.7
hash_coeff = [randrange(n) for _ in range(4)]

print("IP address : ", ".".join(map(str, ip_address)))
print("Hash coefficients : ", hash_coeff)
print("Hash value : ", ip_hash_fcn(ip_address, hash_coeff))
```

```
x_1  x_2  x_3  x_4
IP address : 227.75.113.191
            a_1  a_2  a_3  a_4
Hash coefficients : [394, 429, 328, 78]
Hash value : 97
```
Example: Hashing IP Addresses

Theorem: the family H is universal

\[
\frac{\text{# of functions that map } x \text{ and } y \text{ to the same location}}{\text{total # of functions}} \leq \frac{1}{n}
\]

• Let H be a set of hash functions mapping U to \{0, 1, ..., n-1\}
• The family H is universal if and only if for all x, y in U
 \[\text{Pr}(h(x) = h(y)) \leq 1/n\]
• where h is chosen uniformly at random from H
Hashing IP Addresses Proof

• Consider two distinct IP addresses X and Y
• Assume that \(x_4 \neq y_4 \) (they might differ in all parts)
 • The same argument will hold regardless of which part of the tuple we consider
• Based on our choice of \(h_i \), what is the probability of a collision?
 • Or what fraction of \(h_i \)'s cause a collision? \(\Pr[h(X) = h(Y)] \)
• Where \(h_i \) is any of the hash function from H

• We want to show that \(\leq 1/n \) of the billions of hash functions have a collision for X and Y
Theorem: for any possible hash function, the probability of a collision between objects X and Y is $\leq \frac{1}{n}$

Hash functions are selected from the hash family by randomly generating four values for A

Collision between objects X and Y

$$h(X) = h(Y)$$

$$(A \cdot X) \mod n = (A \cdot Y) \mod n$$

$$(a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4) \mod n = (a_1 y_1 + a_2 y_2 + a_3 y_3 + a_4 y_4) \mod n$$

$$0 = a_1(y_1 - x_1) + a_2(y_2 - x_2) + a_3(y_3 - x_3) + a_4(y_4 - x_4) \mod n$$
Theorem: for any possible hash function, the probability of a collision between objects X and Y is $\leq \frac{1}{n}$

Hash functions are selected from the hash family by randomly generating four values for A

$$0 = a_1(y_1 - x_1) + a_2(y_2 - x_2) + a_3(y_3 - x_3) + a_4(y_4 - x_4) \mod n$$

Something must be different between X and Y. Let’s assume that $x_4 \neq y_4$

$$a_4(x_4 - y_4) \mod n = a_1(y_1 - x_1) + a_2(y_2 - x_2) + a_3(y_3 - x_3) \mod n$$

From here we are going to fix our choices of a_1, a_2, and a_3 and let a_4 be a random variable

We want to show that for any value of a_4 we have a $\frac{1}{n}$ chance of a collision.
Theorem: for any possible hash function, the probability of a collision between objects X and Y is $\leq \frac{1}{n}$

Something must be different between X and Y. Let’s assume that $x_4 \neq y_4$

Fixed, non-zero value

\[a_4(x_4 - y_4) \mod n = a_1(y_1 - x_1) + a_2(y_2 - x_2) + a_3(y_3 - x_3) \mod n \]

Assume n is prime.

From here we are going to fix our choices of $a_1, a_2,$ and a_3 and let a_4 be a random variable

Principle of Deferred Decisions

We want to show that for any value of a_4 we have a $\frac{1}{n}$ chance of a collision.

How many choices of a_4 satisfy the above equation?

• Our RHS is fixed! It is just some number in $[0, n-1]$ because $X, Y,$ and a_1, a_2, a_3 are fixed

• If n is a prime number, then the LHS is equally likely to be any number from $[0, n-1]$
 • This claim requires some number theory to properly prove

Unique multiplicative

Thus, based on our choice for a_4, we have that $Pr(h(X) = h(Y)) = 1/n$
Prime number for n

\[n = 7, \ x_4 = 3, \ y_4 = 1 \]

<table>
<thead>
<tr>
<th>(a_4)</th>
<th>(a_4(x_4 - y_4) \mod n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

X = (x1, x2, x3, x4) where xi is in [0, 255]
A = (a1, a2, a3, a4) and ai is in [0, n-1]

|S| = 500

n = 997

h(x) = (A \cdot X) \mod n
And H includes all combinations for the coefficients in A

What do we want in the second column?
Prime number for n

n = 7, $x_4 = 3$, $y_4 = 1$

<table>
<thead>
<tr>
<th>a_4</th>
<th>$a_4(x_4 - y_4) \mod n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

n = 7, $x_4 = 4$, $y_4 = 1$

<table>
<thead>
<tr>
<th>a_4</th>
<th>$a_4(x_4 - y_4) \mod n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>
Non-Prime number for n

\[n = 8, \ x_4 = 3, \ y_4 = 1 \]

<table>
<thead>
<tr>
<th>(a_4)</th>
<th>(a_4(x_4 - y_4) \mod n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

x4-y4 shares factors with n

\[n = 8, \ x_4 = 4, \ y_4 = 1 \]

<table>
<thead>
<tr>
<th>(a_4)</th>
<th>(a_4(x_4 - y_4) \mod n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>
Summary

• We cannot create a hash function that prevents creation of a pathological dataset

• As long as the hash function is known, a pathological dataset can be created

• We can create families of hash functions that make it infeasible to guess which hash function is in use