Universal Hashing

https://cs.pomona.edu/classes/cs140/
Hash Tables

Operations:
• Insert
• Delete
• Look-up

Guaranteed constant running time for those operations if:
1. If the hash table is properly implemented, and
2. The data is non-pathological.
Hash Table Load

\[\alpha \ := \ \frac{\text{\# of objects in the hash table}}{\text{\# of buckets}} \]

- What is the maximum possible \(\alpha \) for separate chaining?
- What is the maximum possible \(\alpha \) for open addressing?
Hash Table Load

\[\alpha := \frac{\# \text{ of objects in the hash table}}{\# \text{ of buckets}} \]

1. \(\alpha = O(1) \) is necessary to ensure that hash table operations happen in constant time

2. For open addressing, you typically need \(\alpha \ll 1 \) \(0.75 \) is rule of thumb

• Thus, for good hash table performance you must control the load
• How do you control the load?
Pathological Data Sets

• We want our hash functions to “spread-out” the data (i.e., minimize collisions)

• Unfortunately, no perfect hash function exists (it’s impossible)

• You can create a pathological data set for any hash function
Fix (set) the hash function $h(x) \rightarrow \{0, 1, ..., n-1\}$, where n is the number of buckets in the hash table and $n \ll |U|$

With the pigeonhole principle, there must exist a bucket i, such that at least $|U|/n$ elements of U hash to i under h
Pathological Data Set Example

• We want to store student **student ID numbers** in a hash table.

• We will store about **30** students worth of data

• Let’s use a hash table with **87** buckets

• Let’s use the final three numbers as the hash
s = 30
n = 87

def hash_fcn(id_number):
 return id_number % n

id_numbers = [randint(1000000, 9999999) for _ in range(s)]
hash_values = map(hash_fcn, id_numbers)
print('Number of unique student IDs:', len(set(id_numbers)))
print('Number of unique hash values:', len(set(hash_values)))

id_numbers_pathological = [round(num, -2) for num in id_numbers]
hash_values_pathological = map(hash_fcn, id_numbers_pathological)
print('Number of unique student IDs:', len(set(id_numbers_pathological)))
print('Number of unique hash values:', len(set(hash_values_pathological)))

Output:
Number of unique student IDs: 30
Number of unique hash values: 28
Number of unique student IDs: 30
Number of unique hash values: 1
Real World Pathological Data

• Denial of service attack

• A study in 2003 found that they could interrupt the service of any server with the following attributes:

 1. The server used an open-source hash table
 2. The hash table uses an easy-to-reverse-engineer hash function

• How does reverse engineering the hash function help an attacker?
Solutions to Pathological Data

Use a cryptographic hash function
• Infeasible to create pathological data for such a function (but not theoretically impossible)

Use randomization (Can still be an open-source implementation!)
1. Create a family of hash functions
2. Randomly pick one at runtime
Universal Hashing

Let H be a set of hash functions mapping U to \{0, 1, ..., n-1\}

The family H is universal if and only if for all x, y in U

$$\Pr(h(x) = h(y)) \leq 1/n$$

where h is chosen uniformly at random from H

Basically, the hash functions don’t all have the same flaw where they map a set of inputs to the same bucket.
Example: Hashing IP Addresses

- What is U? And how big is U?
- U includes all IP addresses, which we’ll denote as 4-tuples
 example: $X = (x_1, x_2, x_3, x_4)$ where x_i is in $[0, 255]$
- Let n = some prime number that is near a multiple of the number of objects we expect to store
 example: $|S| = 500$, we set $n = 997$
- Let H be our set of hash functions
 example: $h(x) = A \cdot X \mod n = (a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4) \mod n$
 where $A = (a_1, a_2, a_3, a_4)$ and a_i is in $[0, n-1]$
 H includes all combinations the coefficients in A

$|U| = 2^{32} = 256^4 = 4,294,967,296$

$|H| = n^4 = 988$ billion
n = 997

def ip_hash_fcn(X, A):
 return sum([x * a for x, a in zip(X, A)]) % n

ip_address = [randrange(256) for _ in range(4)] # i.e., 192.168.3.7
hash_coeff = [randrange(n) for _ in range(4)]

print("IP address : ", ".".join(map(str, ip_address)))
print("Hash coefficients : ", hash_coeff)
print("Hash value : ", ip_hash_fcn(ip_address, hash_coeff))

IP address : 227.75.113.191
Hash coefficients : [394, 429, 328, 78]
Hash value : 97
Example: Hashing IP Addresses

Theorem: the family \(H \) is universal

\[
\frac{\text{# of functions that map } x \text{ and } y \text{ to the same location}}{\text{total # of functions}} \leq \frac{1}{n}
\]

- Let \(H \) be a set of hash functions mapping \(U \) to \(\{0, 1, ..., n-1\} \)
- The family \(H \) is universal if and only if for all \(x, y \) in \(U \)
 \[\Pr(h(x) = h(y)) \leq \frac{1}{n} \]
- where \(h \) is chosen uniformly at random from \(H \)
Hashing IP Addresses Proof

• Consider two distinct IP addresses X and Y

• Assume that $x_4 \neq y_4$ (they might differ in all parts)
 • The same argument will hold regardless of which part of the tuple we consider

• Based on our choice of h_i, what is the probability of a collision?
 • Or what fraction of h_is cause a collision? $Pr[h(X) = h(Y)]$

• Where h_i is any of the hash function from H

• We want to show that $\leq 1/n$ of the billions of hash functions have a collision for X and Y
Theorem: for any possible hash function, the probability of a collision between objects X and Y is $\leq \frac{1}{n}$

Hash functions are selected from the hash family by randomly generating four values for A

Collision between objects X and Y

$$h(X) = h(Y)$$

$$(A \cdot X) \mod n = (A \cdot Y) \mod n$$

$$(a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4) \mod n = (a_1 y_1 + a_2 y_2 + a_3 y_3 + a_4 y_4) \mod n$$

$$0 = a_1 (y_1 - x_1) + a_2 (y_2 - x_2) + a_3 (y_3 - x_3) + a_4 (y_4 - x_4) \mod n$$
Theorem: for any possible hash function, the probability of a collision between objects X and Y is $\leq \frac{1}{n}$

Hash functions are selected from the hash family by randomly generating four values for A

$$0 = a_1(y_1 - x_1) + a_2(y_2 - x_2) + a_3(y_3 - x_3) + a_4(y_4 - x_4) \mod n$$

Something must be different between X and Y. Let’s assume that $x_4 \neq y_4$

$$a_4(x_4 - y_4) \mod n = a_1(y_1 - x_1) + a_2(y_2 - x_2) + a_3(y_3 - x_3) \mod n$$

From here we are going to fix our choices of a_1, a_2, and a_3 and let a_4 be a random variable

We want to show that for any value of a_4 we have a $\frac{1}{n}$ chance of a collision.
Theorem: for any possible hash function, the probability of a collision between objects X and Y is $\leq \frac{1}{n}$

Something must be different between X and Y. Let’s assume that $x_4 \neq y_4$

$$a_4(x_4 - y_4) \mod n = a_1(y_1 - x_1) + a_2(y_2 - x_2) + a_3(y_3 - x_3) \mod n$$

From here we are going to fix our choices of a_1, a_2, and a_3 and let a_4 be a random variable.

We want to show that for any value of a_4 we have a $\frac{1}{n}$ chance of a collision.

How many choices of a_4 satisfy the above equation?

• Our RHS is fixed! It is just some number in $[0, n-1]$ because X, Y, and a_1, a_2, a_3 are fixed
• If n is a prime number, then the LHS is equally likely to be any number from $[0, n-1]$
 • This claim requires some number theory to properly prove

Thus, based on our choice for a_4, we have that $Pr(h(X) = h(Y)) = 1/n$
Prime number for n

$n = 7$, $x_4 = 3$, $y_4 = 1$

<table>
<thead>
<tr>
<th>a_4</th>
<th>$a_4(x_4 - y_4)$ mod n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

What do we want in the second column?

X = (x_1, x_2, x_3, x_4) where x_i is in $[0, 255]$
A = (a_1, a_2, a_3, a_4) and a_i is in $[0, n-1]$

$|S| = 500$

$n = 997$

$h(x) = (A \cdot X)$ mod n
And H includes all combinations for the coefficients in A
Prime number for n

$n = 7, x_4 = 3, y_4 = 1$

$$\begin{array}{|c|c|}
\hline
a_4 & a_4(x_4 - y_4) \mod n \\
\hline
0 & 0 \\
1 & 2 \\
2 & 4 \\
3 & 6 \\
4 & 1 \\
5 & 3 \\
6 & 5 \\
\hline
\end{array}$$

$n = 7, x_4 = 4, y_4 = 1$

$$\begin{array}{|c|c|}
\hline
a_4 & a_4(x_4 - y_4) \mod n \\
\hline
0 & 0 \\
1 & 3 \\
2 & 6 \\
3 & 2 \\
4 & 5 \\
5 & 1 \\
6 & 4 \\
\hline
\end{array}$$
Non-Prime number for n

$n = 8$, $x_4 = 3$, $y_4 = 1$

<table>
<thead>
<tr>
<th>a_4</th>
<th>$a_4(x_4 - y_4) \mod n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

$n = 8$, $x_4 = 4$, $y_4 = 1$

<table>
<thead>
<tr>
<th>a_4</th>
<th>$a_4(x_4 - y_4) \mod n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

$x_4 - y_4$ shares factors with n
Summary

• We cannot create a hash function that prevents creation of a pathological dataset

• As long as the hash function is known, a pathological dataset can be created

• We can create families of hash functions that make it infeasible to guess which hash function is in use