Red-Black Trees
(A Balanced BST)

https://cs.pomona.edu/classes/cs140/

Some notes taken from
http://www.geeksforgeeks.org/
Outline

Topics and Learning Objectives
• Discuss tree balancing (rotations, insertions, deletions)
• Prove the balancing characteristic of red-black trees
• Discuss the running time of red-black tree operations

Assessments
• Red-black tree activity
Extra Resources

• Introduction to Algorithms, 3rd, chapter 13

Implementations

Although Red-Black trees are not the most modern choice, they do appear in

• Java: TreeMap<K,V>
• C++: std::map

Not something you should use in practice.
Balanced Binary Search Trees

- Why is balancing important?
- What is the worst case for a binary tree?

- Balanced tree: the height of a balanced tree stays $O(lg\ n)$ after insertions and deletions

- Many different types of balanced search trees:
 - AVL Tree, Splay Tree, B Tree, Red-Black Tree
Red-Black Trees Invariants

1. Each node must be labeled either red or black
2. The root must be labeled black
3. The tree cannot have two red nodes in a row (for any red node its parent, left, and right must be black)
4. Every root-NUL path must include the same number of black nodes

Can a Red-Black tree of any height have only black nodes?
Yes
Red-Black Trees

Can a “chain” be a red-black tree?

1. Each node must be labeled either red or black
2. The root must be labeled black
3. The tree cannot have two red nodes in a row (for any red node its parent, left, and right must be black)
4. Every root-NULl path must include the same number of black nodes
Red-Black Trees

1. Each node must be labeled either red or black
2. The root must be labeled black
3. The tree cannot have two red nodes in a row (for any red node its parent, left, and right must be black)
4. Every root-NULL path must include the same number of black nodes

Color this as a Red-Black Tree
Red-Black Trees

1. Each node must be labeled either red or black
2. The root must be labeled black
3. The tree cannot have two red nodes in a row (for any red node its parent, left, and right must be black)
4. Every root-NUL path must include the same number of black nodes
Red-Black Trees

1. Each node must be labeled either red or black
2. The root must be labeled black
3. The tree cannot have two red nodes in a row (for any red node its parent, left, and right must be black)
4. Every root-NULL path must include the same number of black nodes

We could also move the black color down one level.
Red-Black Trees

1. Each node must be labeled either red or black
2. The root must be labeled black
3. The tree cannot have two red nodes in a row (for any red node its parent, left, and right must be black)
4. Every root-NUL path must include the same number of black nodes
Red-Black Trees

1. Each node must be labeled either red or black
2. The root must be labeled black
3. The tree cannot have two red nodes in a row (for any red node its parent, left, and right must be black)
4. Every root-NULL path must include the same number of black nodes

Color this as a Red-Black Tree
Red-Black Trees

1. Each node must be labeled either red or black
2. The root must be labeled black
3. The tree cannot have two red nodes in a row (for any red node its parent, left, and right must be black)
4. Every root-NULL path must include the same number of black nodes
How did Red-Black Trees get their name?
Red-Black Tree Height

• Claim: every Red-Black tree has a $t_{\text{height}} \leq 2 \lg(n + 1) = O(\lg n)$

• Observation: if every root-NUL path has $\geq k$ nodes, then the tree includes a perfectly balanced top portion with k levels

What is k?

$k = 2$

$k = 3$
Red-Black Tree Height

• Claim: every Red-Black tree has a $t_{\text{height}} \leq 2 \lg(n + 1)$

• Observation: if every root-NULL path has $\geq k$ nodes, then the tree includes a perfectly balanced top portion with k levels

$k = 2$

$k = 3$
Red-Black Tree Height

• Claim: every Red-Black tree has a \(t_{\text{height}} \leq 2 \log(n + 1) \)

• Observation: if every root-NUL path has \(\geq k \) nodes, then the tree includes a perfectly balanced top portion with \(k \) levels

What is the minimum number of nodes (\(n \)) in the tree based on \(k \)?

Exercise question 1

<table>
<thead>
<tr>
<th>(k)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Red-Black Tree Height

- Claim: every Red-Black tree has a $t_{\text{height}} \leq 2 \lg(n + 1)$

- Observation: if every root-NUL path has $\geq k$ nodes, then the tree includes a perfectly balanced top portion with k levels

<table>
<thead>
<tr>
<th>k</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

What is the minimum number of nodes (n) in the tree based on k?
Red-Black Tree Height

• Claim: every Red-Black tree has a $t_{height} \leq 2 \lg(n + 1)$

• Observation: if every root-NULL path has $\geq k$ nodes, then the tree includes a perfectly balanced top portion with k levels

What is the minimum number of nodes (n) in the tree based on k?
Red-Black Tree Height

• Claim: every Red-Black tree has a $t_{\text{height}} \leq 2 \lg(n + 1)$

• Observation: if every root-NULL path has $\geq k$ nodes, then the tree includes a perfectly balanced top portion with k levels

What is the minimum number of nodes (n) in the tree based on k?
Red-Black Tree Height

• So, we have:

 \[n \geq 2^k - 1 \]

 \[\lg(n + 1) \geq k \]

• So, we now have an upper bound on k.

• But how does k help us bound the actual height of the tree?

• What does k tell us about the number of black nodes you can have?

• What is the maximum number of black nodes on any root-Null path?

Observation: if every root-NULL path has \(\geq k \) nodes, then the tree includes a perfectly balanced top portion with k levels
Red-Black Tree Height

• So, we have:

\[n \geq 2^k - 1 \]

\[\lg(n + 1) \geq k \]

• So, we now have an upper bound on k.

• But how does k help us bound the actual height of the tree?

• What does k tell us about the number of black nodes you can have?

• What is the maximum number of black nodes on any root-Null path?

Observation: if every root-NULL path has \(\geq k \) nodes, then the tree includes a perfectly balanced top portion with k levels

At most k black nodes

At most \(\lg(n + 1) \) black nodes
Red-Black Tree Height

• So, we have:

\[n \geq 2^k - 1 \]
\[\lg(n + 1) > k \]

• So, we now have an upper bound on \(k \).

• But how does \(k \) help us bound the actual height of the tree?

• What does \(k \) tell us about the number of black nodes you can have?

• What is the maximum number of black nodes on any root-Null path?

Observation: if every root-NULL path has \(\geq k \) nodes, then the tree includes a perfectly balanced top portion with \(k \) levels

At most \(k \) black nodes
At most \(\lg(n + 1) \) black nodes
Red-Black Tree Height

• Thus: in a Red-Black tree with \(n \) nodes, there is a root-NULL path with at most \(\lg (n + 1) \) black nodes

• By invariant (4): every root-NULL path has \(\leq \lg(n + 1) \) black nodes

• By invariant (3): every root-NULL path has \(\leq \lg(n + 1) \) red nodes

• Thus, a total of \(\leq 2\lg(n + 1) \) nodes on every root-NULL path

\[T_n = \# \text{ of Red} + \# \text{ of Black} \]
Red-Black Trees

• If our tree can be colored as a Red-Black tree, then every root-NUL path has \(\leq 2\lg(n + 1) \) nodes total.

• The longest path will dictate the height of the tree.

• So, height of the tree is at most \(2\lg(n + 1) \).

• A tree cannot contain a chain of three nodes.

• Thus, the height of the tree is \(O(\lg n) \).

• Why is this important?

\[\lg(n+1) = \lg n + \lg(1 + 1/n) = \lg n + C \]
Exercise question 2

Draw a **Worst-Case** (most lopsided) Red-Black Tree with a **minimum** of 3 black nodes on every root-NUL path
Red-Black Trees, Inserting a Node

1. Insert the new node

2. Color it red

3. Fix colors to enforce Red-Black Tree invariants
 1. This is a recursive process
Red-Black Trees, Inserting a Node

1. Insert the new node (always insert as a leaf)

2. If the inserted node is the root, then color it black, otherwise color it red

3. If the new node is not root and its parent is black, then we are done

4. Otherwise, look at the node's aunt
 a) If aunt is red
 i. Change color of parent and aunt to black
 ii. Change color of the new node and the grandparent to red
 iii. Go to step (2) and treat grandparent as new node

Why?

Move the black color down

“Aunt” is usually called “Uncle”
Red-Black Trees, Inserting a Node

1. Insert the new node (always insert as a leaf)
2. If the inserted node is the root, then color it black, otherwise color it red
3. If the new node is not root and its parent is black, then we are done
4. Otherwise, look at the node's aunt
 a) If aunt is red
 i. Change color of parent and aunt to black
 ii. Change color of the new node and the grandparent to red
 iii. Go to step (2) and treat grandparent as new node

“Aunt” is usually called “Uncle”
Red-Black Trees, Inserting a Node

1. Insert the new node (always insert as a leaf)
2. If the inserted node is the root, then color it black, otherwise color it red
3. If the new node is not root and its parent is black, then we are done
4. Otherwise, look at the node's aunt
 a) If aunt is red
 b) If aunt is black
 I. Put the new node, its parent, and the grandparent “in order” with the middle node as the root
 II. We have four possibilities for the current positions of N, P, and G
Red-Black Trees, Inserting a Node: Left-Left

1. Right rotate around the grandparent

Left-Left
Tree Rotations: Right
Tree Rotations: Right

Original
Tree Rotations: Right

Original

Right-Rotated
Tree Rotations: Left
Tree Rotations: Left

Original
Tree Rotations: Left

Original

Left-Rotated
Red-Black Trees, Inserting a Node: **Left, Left**

1. Right rotate around the grandparent

![Diagram of Red-Black Tree with a node insertion scenario]
Red-Black Trees, Inserting a Node: Left, Left

1. Right rotate around the grandparent

2. Swap the colors of the grandparent and the parent
Red-Black Trees, Inserting a Node: Left, Left

1. Right rotate around the grandparent

2. Swap the colors of the grandparent and the parent
Red-Black Trees, Inserting a Node: Left, Right

1. Left rotate around the parent

Left-Right
Red-Black Trees, Inserting a Node: Left, Right

1. Left rotate around the parent

2. Right rotate around the grandparent
Red-Black Trees, Inserting a Node: Left, Right

1. Left rotate around the parent

2. Right rotate around the grandparent

3. Swap the colors of the grandparent and the new node
Red-Black Trees, Inserting a Node: Left, Right

1. Left rotate around the parent

2. Right rotate around the grandparent

3. Swap the colors of the grandparent and the new node
Red-Black Trees, Inserting a Node

• What about the Right-Right and Right-Left options?
• They are the **inverse** of the cases we’ve just covered.
• What are the running times of these procedures?
 • Inserting the new node?
 • Recoloring?
 • Restructuring?
• We’re not going to cover deletion, but what are your thoughts? ✔
 • Running time?
FUNCTION `RBTreeInsert(tree, new_node)`

Search for position of new_node

parent = NONE

current_node = tree.root

WHILE current_node != NONE

 parent = current_node

 IF new_node.key < current_node.key
 current_node = current_node.left
 ELSE
 current_node = current_node.right

new_node.parent = parent
FUNCTION RBTreeInsert(tree, new_node)
 # Search for position of new_node
 ...

 # Insert new_node as root or left/right child
 IF parent == NONE
 tree.root = new_node
 ELSE IF new_node.key < parent.key
 parent.left = new_node
 ELSE
 parent.right = new_node
FUNCTION RBTreeInsert(tree, new_node)
 # Search for position of new_node
 ...
 # Insert new_node as root or left/right child
 ...
 # Initialize the new_node
 new_node.left = NONE
 new_node.right = NONE
 new_node.color = RED
 RBTreeFixColors(tree, new_node)
FUNCTION RBTreeFixColors(tree, node)

WHILE node.parent.color == RED
 # Look for aunt/uncle node
 IF node.parent == node.parent.parent.left
 aunt = node.parent.parent.right
 IF aunt.color == RED
 node.parent.color = BLACK
 aunt.color = BLACK
 node.parent.parent.color = RED
 node = node.parent.parent.parent
FUNCTION RBTreeFixColors(tree, node)

WHILE node.parent.color == RED

Look for aunt/uncle node

IF node.parent == node.parent.parent.left

aunt = node.parent.parent.right

IF aunt.color == RED

...

ELSE

IF node == node.parent.right

node = node.parent

LeftRotate(tree, node)

node.parent.color = BLACK

node.parent.parent.color = RED

RightRotate(tree, node.parent.parent.parent)
FUNCTION RBTreeFixColors(tree, node)
WHILE node.parent.color == RED
 # Look for aunt/uncle node
 IF node.parent == node.parent.parent.left
 aunt = node.parent.parent.right
 ...
 ELSE
 aunt = node.parent.parent.left
 IF aunt.color == RED
 node.parent.color = BLACK
 aunt.color = BLACK
 node.parent.parent.parent.color = RED
 node = node.parent.parent.parent

FUNCTION RBTTreeFixColors(tree, node)

WHILE node.parent.color == RED
 # Look for aunt/uncle node
 ...
 ELSE
 aunt = node.parent.parent.left
 ...
 ELSE
 IF node == node.parent.left
 node = node.parent
 RightRotate(tree, node)
 node.parent.color = BLACK
 node.parent.parent.color = RED
 LeftRotate(tree, node.parent.parent.parent)
FUNCTION RBTreeFixColors(tree, node)

WHILE node.parent.color == RED

 # Look for aunt/uncle node

 IF node.parent == node.parent.parent.left
 aunt = node.parent.parent.right
 ELSE
 aunt = node.parent.parent.left
 ...

 tree.root.color = BLACK
Is this a valid BST?
Is this a valid BST?
Is this a valid R-B Tree?
Is this a valid R-B Tree?
Is this the only valid coloring?
Is this the only valid coloring?
Is this the only valid coloring?
Exercise question 3

Insert: 9

1. Insert the new node (always insert as a leaf)
2. If the inserted node is the root, then color it black, otherwise color it red
1. Insert the new node (always insert as a leaf)
2. If the inserted node is the root, then color it black, otherwise color it red
3. If the new node is not root and its parent is black, then we are done
4. Otherwise, look at the node's aunt
 a) If aunt is red
 i. Change color of parent and aunt to black
 ii. Change color of the new node and the grandparent to red
 iii. Go to step (2) and treat grandparent as new node
Insert: 9

1. Insert the new node (always insert as a leaf)
2. If the inserted node is the root, then color it black, otherwise color it red
3. If the new node is not root and its parent is black, then we are done
4. Otherwise, look at the node's aunt
 a) If aunt is red
 I. Change color of parent and aunt to black
 II. Change color of the new node and the grandparent to red
 III. Go to step (2) and treat grandparent as new node
1. Insert the new node (always insert as a leaf)
2. If the inserted node is the root, then color it black, otherwise color it red
3. If the new node is not root and its parent is black, then we are done
4. Otherwise, look at the node's aunt
 a) If aunt is black and left-left
 a) Right rotate around the grandparent
 b) Swap the colors of the grandparent and the parent
 c) Go to step (2) and treat grandparent as new node
Valid R-B Tree?
BST Summary

- Most BST operations take $O(\text{height})$ time.
- With an unbalanced tree this could be as bad as $O(n)$
- We want to ensure that the height of the tree is $O(\lg n)$
- Red-Black trees provide one mechanism for creating balanced trees, meaning that they guarantee $O(\lg n)$ for applicable BST operation
- This requires extra work while inserting and deleting in the form of tree rotations

- Bottom line: as long as our tree satisfies the Red-Black tree invariants (which it does with appropriate insert/delete procedures), then we can assume optimal running time for BSTs