Heaps

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives

• Discuss data structure operations
• Cover heap sort
• Discuss heaps

Exercise

• Heap practice
Extra Resources

• Introduction to Algorithms, 3rd, chapter 6
• Algorithms Illuminated, Part 2: Chapter 10
Data Structures

Used in essentially every single programming task that you can think of

- What are some examples of data structures?
- What are some example programs?

What do they do?

- They organize data so that it can be effectively accessed.

- A data structure is not necessarily a method of laying out data in memory
- It is a way of logically thinking about your data.
The **Heap** Data Structure (not heap memory)

A container for objects that have **key values**
(Sometimes called a “Priority Queue”)

Operations:

- **Insert** : \(O(lg \ n)\)
- **Extract-Min (or max)** : \(O(lg \ n)\)
- **Heapify** : \(O(n)\) for batched inserts
- **Arbitrary Deletion** : \(O(lg \ n)\)

- **Good for continually getting a minimum (or maximum) value**
Heap used to improve algorithm

Selection sort

• Continually look for the smallest element

• The element currently being considered is in blue

• The current smallest element is in red

• Sorted elements are in yellow
Heap used to improve algorithm

Selection sort

- Continually look for the smallest element
- The element currently being considered is in blue
- The current smallest element is in red
- Sorted elements are in yellow
Heap used to improve algorithm

Selection sort
• Continually look for the smallest element
• The element currently being considered is in blue
• The current smallest element is in red
• Sorted elements are in yellow
Heap used to improve algorithm

Selection sort
• Continually look for the smallest element

What is the runtime of selection sort?
How can we make it faster with a heap?

With a heap: $O(n^2) \rightarrow O(n \lg n)$
• Insert all elements into a heap: n
• Extract each element: $n \times \lg n$
Example: Event Manager

Uses a priority queue (synonym for Heap)

Example: simulation or game

• play sounds
• render animation
• detect collisions
• register input

We can probably delay this without much trouble.

Probably the most important to get correct. But does it need to be the highest priority?
Heap Implementation

Conceptually you should think of a Heap as a binary tree
But it is implemented using an array (why?)

Heap Property: for any given node \(x \),
1. \(\text{key}[x] \leq \text{key}[x\text{’s left child}], \) and
2. \(\text{key}[x] \leq \text{key}[x\text{’s right child}] \)

Where is the minimum key?
Heap Implementation

Note: Heaps are **not** unique

You can have multiple different configurations that hold the same data
How do you calculate the index of a node’s parent?

parent_index = (node_index - 1) // 2
How do you calculate the indices of a node’s children?

parent_index = (node_index - 1) // 2
left_child_index = 2 * node_index + 1
right_child_index = 2 * (node_index + 1)
Exercise
Insert: 7

Where should it go?
Insert: 7

Where should it go?

We don’t want gaps in the array. They signal the end of a search.
Insert: 7
Insert: 10
Insert: 10
Insert: 5
Insert: 5

parent_index = (node_index - 1) // 2
Insert: 5

parent_index = (node_index - 1) // 2
Insert: 5

parent_index = (node_index - 1) // 2
Insert: 5

parent_index = (node_index - 1) // 2
What is the running time of an insert?

This is sometimes called “Bubbling-Up”
What node do we put at the root in place of 4?
What node do we put at the root in place of 4?

What if we choose a child?
Extract-Min

4 → 4 → 5 → 9 → 7 → 8 → 9 → 11 → 13 → 10 → 12

11 → 9 → ? → 13 → 7 → 8 → 9 → 10 → 12
Extract-Min

What node do we put in place of 4?

We are guaranteed to not leave a gap if we choose the last node.
Extract-Min

\[\text{left_child_index} = 2 \times \text{node_index} + 1 \]

\[\text{left_child_index} = 2 \times (\text{node_index} + 1) \]
Do we swap with the 4 or the 5?

```
left_child_index = 2 * node_index + 1
left_child_index = 2 * (node_index + 1)
```
Extract-Min

left_child_index = 2 * node_index + 1
left_child_index = 2 * (node_index + 1)
Extract-Min

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)
Extract-Min

left_child_index = 2 * node_index + 1
left_child_index = 2 * (node_index + 1)
Extract-Min

\[\text{left_child_index} = 2 \times \text{node_index} + 1\]

\[\text{left_child_index} = 2 \times (\text{node_index} + 1)\]
Extract-Min

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)

Bubbling-Down
FUNCTION Dijkstra(G, start_vertex)

```plaintext
found = {}
lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)
lengths[start_vertex] = 0

WHILE found.length != G.vertices.length
    FOR v IN found
        FOR vOther, weight IN G.edges[v]
            IF vOther NOT IN found
                vOther_length = lengths[v] + weight
                IF vOther_length < min_length
                    min_length = vOther_length
                    vMin = vOther
            
        found.add(vMin)
        lengths[vMin] = min_length

RETURN lengths
```

What is the running time?

- **How many times does the outer loop run?** $O(n)$
- **How many times do the inner two loops run?** $O(m)$
FUNCTION Dijkstra(G, start_vertex)

found = {}
lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)
lengths[start_vertex] = 0

WHILE found.length != G.vertices.length

 FOR v IN found
 FOR vOther, weight IN G.edges[v]
 IF vOther NOT IN found
 vOther_length = lengths[v] + weight
 IF vOther_length < min_length
 min_length = vOther_length
 vMin = vOther

 found.add(vMin)
 lengths[vMin] = min_length

RETURN lengths

What is the running time?

We can bring this down to O(m \log m) with a simple change.

State of the art of Dijkstra’s:
O(m + n \log n)
(uses Fibonacci heap)
def dijkstras_heap(adjacency_list, start_vertex):
 """Dijkstra's Algorithm implemented with all vertices placed in a heap.
 This version of Dijkstra's Algorithm has a running time of $O(m \log m)$. """

 n = len(adjacency_list)
 path_lengths = {v: inf for v in adjacency_list}
 predecessors = {v: None for v in adjacency_list}

 path_lengths[start_vertex] = 0
 predecessors[start_vertex] = None

 found = set()
 vertex_min_heap = [(path_lengths[start_vertex], start_vertex)]

 while len(found) != n:
 vfrom_length, vfrom = heappop(vertex_min_heap)
 found.add(vfrom)

 for vto, weight in adjacency_list[vfrom]:
 path_length = vfrom_length + weight
 if path_length < path_lengths[vto]:
 path_lengths[vto] = path_length
 predecessors[vto] = vfrom
 heappush(vertex_min_heap, (path_lengths[vto], vto))

 return path_lengths, predecessors

Not optimal but works very well in practice.
while len(found) != n:
 vfrom_length, vfrom = heappop(vertex_min_heap)
 found.add(vfrom)

 for vto, weight in adjacency_list[vfrom]:
 path_length = vfrom_length + weight
 if path_length < path_lengths[vto]:
 path_lengths[vto] = path_length
 predecessors[vto] = vfrom

 heappush(vertex_min_heap, (path_lengths[vto], vto))
def print_path(end_vertex, predecessors):

 path = [end_vertex]
 pred = predecessors[end_vertex]

 while pred is not None:

 path.append(pred)
 pred = predecessors[pred]

 print(" -> ".join([str(v) for v in reversed(path)]))
Dijkstra’s Algorithm Correctness

Theorem:

- Dijkstra’s algorithm will find the shortest path from the start vertex to every other vertex on any graph with non-negative weights.

Proof using a loop invariant. Loop predicate:

- At the start of each iteration of the while loop, the shortest path has been found for every vertex in the found set.
Initialization

• Initially, the found set is empty. So, the invariant is trivially true.

Loop predicate/invariant: At the start of each iteration of the while loop, the shortest path has been found for every vertex in the found set.

...
found = set()
...
while len(found) != n:
vfrom_length, vfrom = heappop(vertex_min_heap)
found.add(vfrom)

for vto, weight in adjacency_list[vfrom]:
 path_length = vfrom_length + weight
 if path_length < path_lengths[vto]:
 path_lengths[vto] = path_length
 predecessors[vto] = vfrom

heappush(vertex_min_heap,
 (path_lengths[vto], vto))
• Assume all previous iterations have produced the correct shortest path for all vertices in the found set.

• For purposes of a contradiction, assume that when a vertex u is added to the found set its path length is not optimal.

• At the time u is found we must have some path to u

Loop predicate/invariant: At the start of each iteration of the while loop, the shortest path has been found for every vertex in the found set

```python
while len(found) != n:
    vfrom_length, vfrom = heappop(vertex_min_heap)
    found.add(vfrom)

    for vto, weight in adjacency_list[vfrom]:
        path_length = vfrom_length + weight
        if path_length < path_lengths[vto]:
            path_lengths[vto] = path_length
            predecessors[vto] = vfrom

    heappush(vertex_min_heap, (path_lengths[vto], vto))
```
Maintenance (1)

• Assume all previous iterations have produced the correct shortest path for all vertices in the found set.

• For purposes of a contradiction, assume that when a vertex u is added to the found set its path length is not optimal.

• At the time u is found we must have some path to u

Loop predicate/invariant: At the start of each iteration of the while loop, the shortest path has been found for every vertex in the found set.

```python
while len(found) != n:
    vfrom_length, vfrom = heappop(vertex_min_heap)
    found.add(vfrom)

    for vto, weight in adjacency_list[vfrom]:
        path_length = vfrom_length + weight
        if path_length < path_lengths[vto]:
            path_lengths[vto] = path_length
            predecessors[vto] = vfrom

    heappush(vertex_min_heap, (path_lengths[vto], vto))
```
Maintenance (1)

• For purposes of a contradiction, assume that when a vertex u is added to the found set its path length is \textbf{not} optimal.
• At the time u is found we must have some path to u
• To have a shorter path to u, it must go through some vertex k not in found.
• But since we only have positive edges, a shorter path going through k, means that k must have been chosen before u. \textbf{Contradiction.}

\textbf{Loop predicate/invariant:} At the start of each iteration of the while loop, the shortest path has been found for every vertex in the found set.

While len(found) != n:
 vfrom_length, vfrom = heappop(vertex_min_heap)
 found.add(vfrom)
 for vto, weight in adjacency_list[vfrom]:
 path_length = vfrom_length + weight
 if path_length < path_lengths[vto]:
 path_lengths[vto] = path_length
 predecessors[vto] = vfrom
 heappush(vertex_min_heap, (path_lengths[vto], vto))
Termination

• The loop terminates when all vertices have been added to the found set.

• Given the loop invariant the shortest path to all vertices have been calculated.

```
while len(found) != n:
    vfrom_length, vfrom = heappop(vertex_min_heap)
    found.add(vfrom)
    for vto, weight in adjacency_list[vfrom]:
        path_length = vfrom_length + weight
        if path_length < path_lengths[vto]:
            path_lengths[vto] = path_length
            predecessors[vto] = vfrom
            heappush(vertex_min_heap, (path_lengths[vto], vto))
```