Heaps

https://cs.pomona.edu/classes/cs140/
Notes

• Grades on gradescope and Sakai

• Make sure you check my grading (regrade requests)

• Checkpoint 3 coming up
 • Connectivity
 • BFS and DFS
 • Topological Orderings
 • Graph Representations
 • Kosaraju's Algorithm (and SCCs)
 • Dijkstra's Algorithm (and SSSP)
Outline

Topics and Learning Objectives
• Discuss data structure operations
• Cover heap sort
• Discuss heaps

Exercise
• Heap practice
Extra Resources

• Introduction to Algorithms, 3rd, chapter 6
Data Structures

Used in essentially every single programming task that you can think of

• What are some examples of data structures?
List some data structures.
Data Structures

Used in essentially every single programming task that you can think of

• What are some examples of data structures?
• What are some example programs?

What do they do?

• They organize data so that it can be effectively accessed.

• A data structure is not necessarily a method of laying out data in memory
• It is a way of logically thinking about your data.
The Heap Data Structure (not heap memory)

A container for objects that have key values
(Sometimes called a “Priority Queue”)

Operations:

- Insertion : $O(\lg n)$
- Extract-min (or max) : $O(\lg n)$
- Heapify : $O(n)$ for batched insertions
- Arbitrary Deletion : $O(\lg n)$

- Good for continually getting a minimum (or maximum) value
Heap used to improve algorithm

Selection sort

• Continually look for the smallest element
• The element currently being considered is in blue
• The current smallest element is in red
• Sorted elements are in yellow
Heap used to improve algorithm

Selection sort
• Continually look for the smallest element
• The element currently being considered is in blue
• The current smallest element is in red
• Sorted elements are in yellow
Heap used to improve algorithm

Selection sort
• Continually look for the smallest element
• The element currently being considered is in blue
• The current smallest element is in red
• Sorted elements are in yellow
Heap used to improve algorithm

Selection sort
• Continually look for the smallest element

What is the runtime of selection sort?
How can we make it faster with a heap? (Breakout)

\[O(n) + n \cdot O(\log n) = O(n \log n) \]

With a heap: \(O(n^2) \rightarrow O(n \log n) \)
• Insert all elements into a heap: \(n \)
• Extract each element: \(n \cdot \log n \)
Example: Event Manager

Uses a priority queue (synonym for Heap)

Example: simulation or game

- play sounds
- render animation
- detect collisions
- register input
Heap Implementation

Conceptually you should think of a Heap as a binary tree.
It is actually implemented using an array (why?)

Heap Property: for any given node \(x \),

1. \(\text{key}[x] \leq \text{key}[x\text{’s left child}] \), and
2. \(\text{key}[x] \leq \text{key}[x\text{’s right child}] \)

Where is the minimum key?

Root

Locality

- No pointer following
- Fewer heap-allocations
- No pointer storing
Heap Implementation

Note: Heaps are not unique

You can have multiple different configurations that hold the same data
How do you calculate the index of a node’s parent?

\[\text{parent_index} = \left(\text{node_index} - 1 \right) \div 2 \]
How do you calculate the indices of a node’s children?

\[
\text{parent_index} = \frac{\text{node_index} - 1}{2}
\]

\[
\text{left_child_index} = 2 \times \text{node_index} + 1
\]

\[
\text{right_child_index} = 2 \times (\text{node_index} + 1)
\]
Exercise
Insert: 7

Where should it go?
Insert: 7

Where should it go?

What can't we have gaps in the array?
Insert: 7
Insert: 10
Insert: 10
Insert: 5
Insert: 5

\[\text{parent_index} = \left(\text{node_index} - 1 \right) \div 2 \]
Insert: 5

parent_index = (node_index - 1) \[\div\] 2
Insert: 5

parent_index = (node_index - 1) // 2
Insert: 5

parent_index = \((\text{node_index} - 1) \div 2 \)
What is the running time of an insertion?

This is sometimes called “Bubbling-Up”
What node do we put at the root in place of 4?
What node do we put at the root in place of 4?

What if we choose a child?
Extract Min
Extract Min
Extract Min
What node do we put in place of 4?

We are guaranteed to not leave a gap if we choose the last node.
Extract Min

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)
Do we swap with the 4 or the 5?

Extract Min

```
left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)
```
Extract Min

left_child_index = 2 * node_index + 1
left_child_index = 2 * (node_index + 1)
Extract Min

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)
Extract Min

left_child_index = 2 \times \text{node_index} + 1

left_child_index = 2 \times (\text{node_index} + 1)
left_child_index = 2 * node_index + 1
left_child_index = 2 * (node_index + 1)
Extract Min

left_child_index = 2 * node_index + 1

left_child_index = 2 * (node_index + 1)
FUNCTION Dijkstra(G, start_vertex)

found = {}
lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)
lengths[start_vertex] = 0

WHILE found.length != G.vertices.length
 FOR v IN found
 FOR vOther, weight IN G.edges[v]
 IF vOther NOT IN found
 vOther_length = lengths[v] + weight
 IF vOther_length < min_length
 min_length = vOther_length
 vMin = vOther
 found.add(vMin)
 lengths[vMin] = min_length

RETURN lengths

How many times does the outer loop run?
O(n)

How many times do the inner two loops run?
O(m)
FUNCTION Dijkstra(G, start_vertex)

found = {}
lenghts = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)
lenghts[start_vertex] = 0

WHILE found.length != G.vertices.length
 FOR v IN found
 FOR vOther, weight IN G.edges[v]
 IF vOther NOT IN found
 vOther_length = lengths[v] + weight
 IF vOther_length < min_length
 min_length = vOther_length
 vMin = vOther
 found.add(vMin)
lenghts[vMin] = min_length

RETURN lengths
FUNCTION Dijkstra(G, start_vertex)
 found = {}
 lengths = {v: INFINITY FOR v IN G.vertices}

 found.add(start_vertex)
 lengths[start_vertex] = 0

 WHILE found.length != G.vertices.length
 FOR v IN found
 FOR vOther, weight IN G.edges[v]
 IF vOther NOT IN found
 vOther_length = lengths[v] + weight
 IF vOther_length < min_length
 min_length = vOther_length
 vMin = vOther
 found.add(vMin)
 lengths[vMin] = min_length

 RETURN lengths

What is the running time?

Store vertices in heap

\[\text{\(O(m \lg n)\)} \]

State of the art of Dijkstra’s:
\[\text{\(O(m + n \lg n)\)} \]
(uses Fibonacci heap)