Dijkstra’s Algorithm

https://cs.pomona.edu/classes/cs140/
What technologies are your classes using this semester?
Schedule

• Checkpoint Wrapper

• Assignment 03 due tomorrow (Oct 1)
 • Covers material through Sep 21

• Synchronous lecture next Monday (Oct 5)

• Checkpoint 03 next Wednesday (Oct 7)
 • Covers material through Oct 5 (Dijkstra’s implemented with a Heap)

• Asynchronous lecture the following Monday (Oct 12)
Dijkstra's Single-Source Shortest Path Algorithm
Outline

Topics and Learning Objectives
• Discuss graphs with edge weights
• Discuss shortest paths
• Discuss Dijkstra’s algorithm including a proof

Exercise
• Dijkstra’s Algorithm
Extra Resources

• Introduction to Algorithms, 3rd, chapter 24
Dijkstra’s Algorithm

Find the shortest path between a start vertex s and every other vertex in the graph G

Can halt the algorithm if you only want to find shortest path to a specific vertex (for example, a destination city)

Uses:
• Network routing
• Path planning
• Etc.

www.combinatorica.com
Dijkstra’s Algorithm

Find the shortest path between a start vertex s and every other vertex in the graph G

Can halt the algorithm if you only want to find shortest path to a specific vertex (for example, a destination city)

Uses:
- Network routing
- Path planning
- Etc.
Dijkstra’s Algorithm

Input
• A weighted graph $G = (V, E)$ and
• A source vertex s

Output
• for all v in V we output the length of the shortest path from $s \rightarrow v$
• you can also output the actual path, but we’ll just worry about length for now

Assumptions
• A path exists from s to every other node (how can we check this property?)
• All edge weights are non-negative
What is the shortest path from S to all other vertices?

- $S \rightarrow V: (S, V), 1$
- $S \rightarrow W: (S, V), (V, W), 13$
- $S \rightarrow t: (S, V), (V, W), (W, t), 6$
How did we do shortest path before?

- BFS

- How can we modify that process to work for graphs with weighted edges?

- Why would we not want to do that?
FUNCTION Dijkstra(G, start_vertex)
 found = {}
 lengths = {v: INFINITY FOR v IN G.vertices}

 found.add(start_vertex)
 lengths[start_vertex] = 0

 WHILE found.length != G.vertices.length
 FOR v IN found
 FOR vOther, weight IN G.edges[v]
 IF vOther NOT IN found
 vOther_length = lengths[v] + weight
 IF vOther_length < min_length
 min_length = vOther_length
 vMin = vOther
 found.add(vMin)
 lengths[vMin] = min_length

 RETURN lengths
FUNCTION Dijkstra(G, start_vertex)

found = {}

lengths =

FOR v IN G.vertices

found.add(start_vertex)

lengths[start_vertex] = 0

WHILE found.length != G.vertices.length

FOR v IN found

FOR vOther, weight IN G.edges[v]

IF vOther NOT IN found

vOther_length = lengths[v] + weight

IF vOther_length < min_length

min_length = vOther_length

vMin = vOther

found.add(vMin)

lengths[vMin] = min_length

RETURN lengths
FUNCTION Dijkstra(G, start_vertex)

found = {}
lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)
l = lengths[start_vertex] = 0

WHILE found.length != G.vertices.length
 FOR v IN found
 FOR vOther, weight IN G.edges[v]
 IF vOther NOT IN found
 vOther_length = lengths[v] + weight
 IF vOther_length < min_length
 min_length = vOther_length
 vMin = vOther
 found.add(vMin)
l = lengths[vMin] = min_length

RETURN lengths
FUNCTION Dijkstra(G, start_vertex)

found = {}
lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)
lengths[start_vertex] = 0

WHILE found.length != G.vertices.length
 FOR v IN found
 FOR vOther, weight IN G.edges[v]
 IF vOther NOT IN found
 vOther_length = lengths[v] + weight
 IF vOther_length < min_length
 min_length = vOther_length
 vMin = vOther
 found.add(vMin)
 lengths[vMin] = min_length

RETURN lengths
Exercise
Dijkstra’s Algorithm with negative edges

• How might you deal with negative edges?
• How about adding some value to every edge?

What is the shortest path from s to t?
Dijkstra’s Algorithm with negative edges

• How might you deal with negative edges?
• How about adding some value to every edge?

What is the shortest path from s to t?
Dijkstra’s Algorithm with negative edges

• How might you deal with negative edges?
• How about adding some value to every edge?

What is the shortest path from s to t?

We would add a different amount to each path!
Dijkstra’s Algorithm

• What have we done so far?
• We’ve only shown that it works for the given example.
• This is not enough to prove correctness.

• In general, examples are good for:
 • Demonstration
 • Contradictions

• They are not good for proving correctness.
Proof by induction that $P(n)$ holds for all n

1. $P(1)$ holds because <something about the code/problem>
2. Let’s assume that $P(k)$ (where $k < n$) holds.
3. $P(n)$ holds because of $P(k)$ and <something about the code>
4. Thus, by induction, $P(n)$ holds for all n
Correctness

Theorem for Dijkstra’s algorithm:
For every directed graph with non-negative edge lengths, Dijkstra’s algorithm computes all shortest path distances from `start_vertex` to every other vertex

Base Case:
• `lengths[start_vertex] = 0`

Proof by induction that `P(n)` holds for all `n`
• `P(1)` holds because ...
• Let’s assume that `P(k)` (where `k < n`) holds.
• `P(n)` holds because of `P(k)` and ...
• Thus, by induction, `P(n)` holds for all `n`
Correctness

Theorem for Dijkstra’s algorithm:

For every directed graph with non-negative edge lengths, Dijkstra’s algorithm computes all shortest path distances from `start_vertex` to every other vertex.

Inductive Hypothesis:

• Assume all previous iterations produce correct shortest paths.
• For all `v` in `found`, `lengths[v]` = shortest path length from `start_vertex` to `v`.

Proof by induction that `P(n)` holds for all `n`:

• `P(1)` holds because ...
• Let’s assume that `P(k)` (where `k < n`) holds.
• `P(n)` holds because of `P(k)` and ...
• Thus, by induction, `P(n)` holds for all `n`.

\[\text{Proof:} \quad \text{Let} \quad P(n) \quad \text{hold for all} \quad n \quad \text{such that} \quad k < n. \quad \text{Then,} \quad P(n) \quad \text{also holds.} \]

\[\text{Proof:} \quad \text{Let} \quad P(n) \quad \text{hold for all} \quad n \quad \text{such that} \quad k < n. \quad \text{Then,} \quad P(n) \quad \text{also holds.} \]
FUNCTION Dijkstra(G, start_vertex)

found = {}
lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)
lengths[start_vertex] = 0

WHILE found.length != G.vertices.length

FOR v IN found
 FOR vOther, weight IN G.edges[v]
 IF vOther NOT IN found
 vOther_length = lengths[v] + weight
 IF vOther_length < min_length
 min_length = vOther_length
 vMin = vOther

found.add(vMin)
lengths[vMin] = min_length

RETURN lengths

Proof by induction that \(P(n) \) holds for all \(n \):

- \(P(1) \) holds because …
- Let’s assume that \(P(k) \) (where \(k < n \)) holds.
- \(P(n) \) holds because of \(P(k) \) and …
- Thus, by induction, \(P(n) \) holds for all \(n \)
Inductive Step

In the current iteration:

• We pick an edge \((v^*, v_{\text{Min}})\) based on Dijkstra’s greedy criterion

• add \(v_{\text{Min}}\) to found

• Set the path length of \(v_{\text{Min}} \rightarrow \text{lengths}[v_{\text{Min}}] = \text{lengths}[v^*] + \text{weight}_{v^*, v_{\text{Min}}}\)

What do we know about \(\text{lengths}[v^*]\)?

• Optimal path to \(v^*\), and we won’t find a better path to \(v_{\text{Min}}\)

Proof by induction that \(P(n)\) holds for all \(n\)

• \(P(1)\) holds because ...

• Let’s assume that \(P(k)\) (where \(k < n\)) holds.

• \(P(n)\) holds because of \(P(k)\) and ...

• Thus, by induction, \(P(n)\) holds for all \(n\)
Inductive Step

In the current iteration:

• We pick an edge \((v^*, v_{\text{Min}})\) based on Dijkstra’s greedy criterion
• add \(v_{\text{Min}}\) to found
• Set the path length of \(v_{\text{Min}}\) to \(\text{lengths}[v_{\text{Min}}] = \text{lengths}[v^*] + \text{weight}_{v^*,v_{\text{Min}}}\)

What do we know about \(\text{lengths}[v^*]\)?

• Optimal path to \(v^*\), and we won’t find a better path to \(v_{\text{Min}}\)

Our inductive hypothesis states that it is the minimal path length

How do we prove this?

By our inductive hypothesis, our theorem for Dijkstra’s is correct

Proof by induction that \(P(n)\) holds for all \(n\)

• \(P(1)\) holds because ...
• Let’s assume that \(P(k)\) (where \(k < n\) holds.
• \(P(n)\) holds because of \(P(k)\) and ...
• Thus, by induction, \(P(n)\) holds for all \(n\)
Correctness

How many different types of paths do we consider each iteration?
Dijkstra’s says that this is the best available path.
How do we know that the path from v^* to v_{Min} is better than the path from v^* to y?

Both include the path from s to v^*, and Dijkstra’s Algorithm always picks the minimal path length.
How do we know that the path from v^* to y to v_{Min} is not even better than the path from v^* to v_{Min}?

Dijkstra’s Algorithm only operates on graphs with positive edge weights. Thus, this new path must be greater than or equal to the (v^*, v_{Min}) edge.
Correctness

How do we know that the path from v^* to v_{Min} is better than the path from x to v_{Min}?

Dijkstra’s Algorithm compares these two options and picks the minimal path length.
Correctness

How do we know that the path from x to y to v_{Min} is not even better than the path from v^* to v_{Min}?

Dijkstra's Algorithm only operates on graphs with positive edge weights. Thus, this new path must be greater than or equal to the (v^*, v_{Min}) edge.
Not taking the shortest edge. We are taking the shortest path!
Sometimes the the shortest edge is on the shortest path.
Why doesn’t Dijkstra’s work on graphs with negative edges?
Correctness (summary)

• Given our assumption that we do not have negative edges
• And our inductive hypothesis that our path to v^* is the shortest
• And our analysis of Dijkstra’s greedy criterion

• We have shown that

$$\text{lengths}[v_{\text{Min}}] = \text{lengths}[v^*] + \text{weight}_{v^*,v_{\text{Min}}}$$ is the best available path length
FUNCTION Dijkstra(G, start_vertex)
 found = {}
 lengths = {v: INFINITY FOR v IN G.vertices}

 found.add(start_vertex)
 lengths[start_vertex] = 0

 WHILE found.length != G.vertices.length
 FOR v IN found
 FOR vOther, weight IN G.edges[v]
 IF vOther NOT IN found
 vOther_length = lengths[v] + weight
 IF vOther_length < min_length
 min_length = vOther_length
 vMin = vOther

 found.add(vMin)
 lengths[vMin] = min_length

 RETURN lengths
FUNCTION Dijkstra(G, start_vertex)

 found = {}
 lengths = {v: INFINITY FOR v IN G.vertices}

 found.add(start_vertex)
 lengths[start_vertex] = 0

 WHILE found.length != G.vertices.length
 FOR v IN found
 FOR vOther, weight IN G.edges[v]
 IF vOther NOT IN found
 vOther_length = lengths[v] + weight
 IF vOther_length < min_length
 min_length = vOther_length
 vMin = vOther
 found.add(vMin)
 lengths[vMin] = min_length

 RETURN lengths
FUNCTION Dijkstra(G, start_vertex)

found = {}
l lengths = {v: INFINITY FOR v IN G.vertices}

found.add(start_vertex)
l lengths[start_vertex] = 0

WHILE found.length != G.vertices.length

FOR v IN found

FOR vOther, weight IN G.edges[v]

IF vOther NOT IN found

vOther_length = lengths[v] + weight

IF vOther_length < min_length

min_length = vOther_length
vMin = vOther

found.add(vMin)
l lengths[vMin] = min_length

RETURN lengths

What is the running time?

O(nm)

How many times does the outer loop run?

O(n)

How many times do the inner two loops run?

O(m)