Kosaraju’s Algorithm for
Strongly Connected Components

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives

• Review topological orderings
• Discuss strongly connected components
• Cover Kosaraju’s Algorithm

Exercise

• Work through Kosaraju’s Algorithm
Extra Resources

• Introduction to Algorithms, 3rd, chapter 22
Topological Orderings

Definition: a topological ordering of a directed acyclic graph is a labelling f of the graph’s vertices such that:

1. The f-values are of the set \{1, 2, ..., n\}
2. For an edge (u, v) of G, $f(u) < f(v)$
Solve with DFS

FUNCTION TopologicalOrdering(G)

found = {v: FALSE FOR v IN G.vertices}
fValues = {v: INFINITY FOR v IN G.vertices}
f = G.vertices.length

FOR v IN G.vertices
 IF found[v] == FALSE
 DFSTopological(G, v, found, f, fValues)

RETURN fValues

FUNCTION DFSTopological(G, v, found, f, fValues)

found[v] = TRUE

FOR vOther IN G.edges[v]
 IF found[vOther] == FALSE
 DFSTopological(G, vOther, found, f, fValues)

fValues[v] = f
f = f - 1
Strongly Connected Components

• Topological orderings are useful in their own right, but they also let us efficiently calculate the strongly connected components (SCCs) of a graph.

• A component (set of vertices) of a graph is strongly connected if we can find a path from any vertex to any other vertex.

• This is a concept for directed graphs only.

• (just connected components for undirected graphs)

Why are SCCs useful?
What are the strongly connected components of this graph?
Can we use DFS?

What does a DFS do?
• Finds everything that is findable
• Does not visit any vertex more than once

So, what can we find from each of the different nodes?
What if we start DFS here?

What if we start DFS here?

What if we start DFS here?
Kosaraju

Computes the SCCs in \(O(m + n)\) time \((\text{linear!})\)

1. Create a reverse version of the \(G\) called \(G_{\text{reversed}}\)
G

G_reversed
Kosaraju

Computes the SCCs in $O(m + n)$ time (**linear!**)

1. Create a reverse version of the G called G_{reversed}

2. Run **KosarajuLabels** on G_{reversed}

 ![Compute a topological order of the meta graph]

3. Create a relabeled version of the G called $G_{\text{relabeled}}$

4. Run **KosarajuLeaders** on $G_{\text{relabeled}}$

 ![Explore vertices in the new order]
FUNCTION Kosaraju(G)
 G_reversed = reverse_graph(G)
 new_labels = KosarajuLabels(G_reversed)
 G_relabeled = relabel_graph(G, new_labels)
 leaders = KosarajuLeaders(G_relabeled)

RETURN leaders
FUNCTION KosarajuLabels(G)
 found = {v: FALSE FOR v IN G.vertices}
 label = 0
 labels = {v: NONE FOR v IN G.vertices}
 FOR v IN G.vertices.reverse_order
 IF found[v] == FALSE
 DFSLabels(G, v, found, label, labels)
 RETURN labels

FUNCTION Kosaraju(G)
 G_reversed = reverse_graph(G)
 new_labels = KosarajuLabels(G_reversed)
 G_relabeled = relabel_graph(G, new_labels)
 leaders = KosarajuLeaders(G_relabeled)
 RETURN leaders

FUNCTION DFSLabels(G, v, found, label, labels)
 found[v] = TRUE
 FOR vOther IN G.edges[v]
 IF found[vOther] == FALSE
 DFSLabels(G, vOther, found, label, labels)
 label = label + 1
 labels[v] = label
FUNCTION KosarajuLeaders(G)
 found = {v: FALSE FOR v IN G.vertices}
 leaders = {v: NONE FOR v IN G.vertices}

 FOR v IN G.vertices.reverse_order
 IF found[v] == FALSE
 leader = v
 DFSLeaders(G, v, found, leader, leaders)

 RETURN leaders

FUNCTION DFSLeaders(G, v, found, leader, leaders)
 found[v] = TRUE
 leaders[v] = leader
 FOR vOther IN G.edges[v]
 IF found[vOther] == FALSE
 DFSLeaders(G, vOther, found, leader, leaders)

RETURN leaders

FUNCTION Kosaraju(G)
 G_reversed = reverse_graph(G)
 new_labels = KosarajuLabels(G_reversed)

 G_relabeled = relabel_graph(G, new_labels)
 leaders = KosarajuLeaders(G_relabeled)

 RETURN leaders
These are typically implemented in a single function.
FUNCTION KosarajuLabels(G)
 found = \{v: FALSE FOR v IN G.vertices\}
 label = 0
 labels = \{v: NONE FOR v IN G.vertices\}

 FOR v IN G.vertices.reverse_order
 IF found[v] == FALSE
 DFSLabels(G, v, found, label, labels)

 RETURN labels

FUNCTION DFSLabels(G, v, found, label, labels)
 found[v] = TRUE
 FOR vOther IN G.edges[v]
 IF found[vOther] == FALSE
 DFSLabels(G, vOther, found, label, labels)
 label = label + 1
 labels[v] = label

FUNCTION KosarajuLeaders(G)
 found = \{v: FALSE FOR v IN G.vertices\}
 leaders = \{v: NONE FOR v IN G.vertices\}

 FOR v IN G.vertices.reverse_order
 IF found[v] == FALSE
 leader = v
 DFSLeaders(G, v, found, leader, leaders)

 RETURN leaders

FUNCTION DFSLeaders(G, v, found, leader, leaders)
 found[v] = TRUE
 leaders[v] = leader
 FOR vOther IN G.edges[v]
 IF found[vOther] == FALSE
 DFSLeaders(G, vOther, found, leader, leaders)

These are typically implemented in a single function
FUNCTION KosarajuLabels(G)
 found = {v: FALSE FOR v IN G.vertices}
 label = 0
 labels = {v: NONE FOR v IN G.vertices}
 FOR v IN G.vertices.reverse_order
 IF found[v] == FALSE
 DFSLabels(G, v, found, label, labels)
 RETURN labels

FUNCTION DFSLabels(G, v, found, label, labels)
 found[v] = TRUE
 FOR vOther IN G.edges[v]
 IF found[vOther] == FALSE
 DFSLabels(G, vOther, found, label, labels)
 label = label + 1
 labels[v] = label

FUNCTION KosarajuLeaders(G)
 found = {v: FALSE FOR v IN G.vertices}
 leaders = {v: NONE FOR v IN G.vertices}
 FOR v IN G.vertices.reverse_order
 IF found[v] == FALSE
 leader = v
 DFSLeaders(G, v, found, leader, leaders)
 RETURN leaders

FUNCTION DFSLeaders(G, v, found, leader, leaders)
 found[v] = TRUE
 leaders[v] = leader
 FOR vOther IN G.edges[v]
 IF found[vOther] == FALSE
 DFSLeaders(G, vOther, found, leader, leaders)

These are typically implemented in a single function
FUNCTION KosarajuLoop(G)
 found = {v: FALSE FOR v IN G.vertices}
 label = 0
 labels = {v: NONE FOR v IN G.vertices}
 leaders = {v: NONE FOR v IN G.vertices}

 FOR v IN G.vertices.reverse_order
 IF found[v] == FALSE
 leader = v
 KosarajuDFS(G, v, found, label, labels, leader, leaders)

 RETURN labels, leaders

FUNCTION KosarajuDFS(G, v, found, label, labels, leader, leaders)
 found[v] = TRUE
 leaders[v] = leader
 FOR vOther IN G.edges[v]
 IF found[vOther] == FALSE
 KosarajuDFS(G, vOther, found, label, labels, leader, leaders)
 label = label + 1
 labels[v] = label
FUNCTION Kosaraju(G)
 G_reversed = reverse_graph(G)
 new_labels = KosarajuLabels(G_reversed)

 G_relabeled = relabel_graph(G, new_labels)
 leaders = KosarajuLeaders(G_relabeled)

 RETURN leaders
FUNCTION Kosaraju(G)
 G_reversed = reverse_graph(G)
 new_labels, _ = KosarajuLoop(G_reversed)

 G_relabeled = relabel_graph(G, new_labels)
 _, leaders = KosarajuLoop(G_relabeled)

 RETURN leaders
Kosaraju

Computes the SCCs in O(m + n) time (linear!)
1. Create a reverse version of the G called G_reversed

2. Run KosarajuLoop on G_reversed
 Compute a topological order of the meta graph

3. Create a relabeled version of the G called G_relabeled

4. Run KosarajuLoop on G_relabeled
 Explore vertices in the new order
FUNCTION Kosaraju(G)
 G_reversed = reverse_graph(G)
 new_labels, _ = KosarajuLoop(G_reversed)

 G_relabeled = relabel_graph(G, new_labels)
 _, leaders = KosarajuLoop(G_relabeled)

 RETURN leaders

Where do we want to start DFS if we are looking for SCCs?
FUNCTION Kosaraju(G)
 \[G_{\text{reversed}} = \text{reverse}_graph(G) \]
 new_labels, _ = KosarajuLoop(G_{\text{reversed}})

 G_{\text{relabeled}} = \text{relabel}_graph(G, \text{new_labels})
 , leaders = KosarajuLoop(G{\text{relabeled}})

 RETURN leaders

Where do we want to start DFS if we are looking for SCCs?

G_{\text{reversed}}
FUNCTION Kosaraju(G)
 G_reversed = reverse_graph(G)
 new_labels, _ = KosarajuLoop(G_reversed)

 G_relabeled = relabel_graph(G, new_labels)
 _, leaders = KosarajuLoop(G_relabeled)

RETURN leaders

Where do we want to start DFS if we are looking for SCCs?

G_reversed
FUNCTION KosarajuLoop(G)
found = {v: FALSE FOR v IN G.vertices}
label = 0
labels = {v: NONE FOR v IN G.vertices}
leaders = {v: NONE FOR v IN G.vertices}
FOR v IN G.vertices.reverse_order
 IF found[v] == FALSE
 leader = v
 KosarajuDFS(...)
RETURN labels, leaders

FUNCTION KosarajuDFS(...)
found[v] = TRUE
leaders[v] = leader
FOR vOther IN G.edges[v]
 IF found[vOther] == FALSE
 KosarajuDFS(...)
label = label + 1
labels[v] = label

Ignore leaders the first pass
Ignore labels the second pass
FUNCTION Kosaraju(G)
 G_reversed = reverse_graph(G)
 new_labels, _ = KosarajuLoop(G_reversed)

 G_relabeled = relabel_graph(G, new_labels)
 _, leaders = KosarajuLoop(G_relabeled)

 RETURN leaders

G_relabeled
FUNCTION KosarajuLoop(G)
 found = {v: FALSE FOR v IN G.vertices}
 label = 0
 labels = {v: NONE FOR v IN G.vertices}
 leaders = {v: NONE FOR v IN G.vertices}

 FOR v IN G.vertices.reverse_order
 IF found[v] == FALSE
 leader = v
 KosarajuDFS(...)

 RETURN labels, leaders

FUNCTION KosarajuDFS(...)
 found[v] = TRUE
 leaders[v] = leader
 FOR vOther IN G.edges[v]
 IF found[vOther] == FALSE
 KosarajuDFS(...)
 label = label + 1
 labels[v] = label

Ignore leaders the first pass
Ignore labels the second pass
Sink SCC in Meta Graph

G

G_reversed

G_relabeled
FUNCTION Kosaraju(G)
 G_reversed = reverse_graph(G)
 new_labels, _ = KosarajuLoop(G_reversed)
 G_relabeled = relabel_graph(G, new_labels)
 _, leaders = KosarajuLoop(G_relabeled)
 RETURN leaders
FUNCTION KosarajuLoop(G)
 found = {v: FALSE FOR v IN G.vertices}
 label = 0
 labels = {v: NONE FOR v IN G.vertices}
 leaders = {v: NONE FOR v IN G.vertices}

 FOR v IN G.vertices.reverse_order
 IF found[v] == FALSE
 leader = v
 KosarajuDFS(G, v, found, label, labels, leader, leaders)

 RETURN labels, leaders

FUNCTION KosarajuDFS(G, v, found, label, labels, leader, leaders)
 found[v] = TRUE
 leaders[v] = leader
 FOR vOther IN G.edges[v]
 IF found[vOther] == FALSE
 KosarajuDFS(G, v, found, label, labels, leader, leaders)
 label = label + 1
 labels[v] = label

FUNCTION Kosaraju(G)
 G_reversed = reverse_graph(G)
 new_labels, _ = KosarajuLoop(G_reversed)

 G_relabeled = relabel_graph(G, new_labels)
 _, leaders = KosarajuLoop(G_relabeled)

 RETURN leaders
Why does this work?

• Does this work for all graphs, or just this example?

• The SCCs of G create an acyclic “meta-graph”

• For the “meta-graph”
 • Vertices correspond to the SCCs
 • Edges correspond to paths among the SCCs
How do we know that the SCC based meta-graph is acyclic?
Key Lemma

- Consider the two adjacent SCCs in the meta-graph above
- Now consider the re-labeling found from the reverse graph

- Let \(f(v) \) = the re-labeling resulting from KosarajuLoop\(^{\text{reverse}}\)\((G_{\text{reversed}})\)

- Then \(\max[f(.) \text{ in } \text{SCC1}] < \max[f(.) \text{ in } \text{SCC2}] \)

- Corollary: the maximum f-value must lie in a “sink SCC” of the original graph
Where should we start labeling leaders in the second pass?
Where should we start labeling leaders in the second pass?
Max f-value of SCC1 = F1

Max f-value of SCC2 = F2

Max f-value of SCC3 = F3

Max f-value of SCC4 = F4

Then \(F_1 < \{F_2, F_3\} < F_4 \)
Max f-value of SCC2 = F2
Max f-value of SCC3 = F3
Max f-value of SCC4 = F4
Max f-value of SCC1 = F1

Then F1 < {F2, F3} < F4

What would happen if SCC4 had a link back to SCC3?
Proof of Lemma

Case 1: consider the case when the first vertex that we explore is in SCC1

- Then all SCC1 is explored before SCC2
- Therefore, all f-values in SCC1 are less than all f-values in SCC2
- So, in the original graph we will start in SCC2 (the sink)

```
FUNCTION KosarajuDFS(...) 
    found[v] = TRUE 
    leaders[v] = leader 
    FOR vOther IN G.edges[v] 
        IF found[vOther] == FALSE 
            KosarajuDFS(...) 
    label = label + 1 
    labels[v] = label 
```
Proof of Lemma

Case 2: consider the case when the first vertex that we explore is in SCC2

- All other vertices in SCC2 are explored before vertex j
- All vertices in SCC1 are explored before vertex j
- Therefore, all f-values in SCC1 and SCC2 are less than the f-value of vertex j
- So, in the original graph we will start at vertex j in SCC2 (the sink)

```
FUNCTION KosarajuDFS(…)
    found[v] = TRUE
    leaders[v] = leader
    FOR vOther IN G.edges[v]
        IF found[vOther] == FALSE
            KosarajuDFS(…)
    label = label + 1
    labels[v] = label
```
What does this mean?

• We’ll start the second KosarajuLoop at an “SCC sink”

• That sink will then be removed (by marking all vertices in the SCC as explored) and we’ll next move to the newly created sink

• And so on
Kosaraju’s Algorithm Summary

Computes the SCCs in $O(m + n)$ time (linear!)

1. Create a reverse version of the G called G_{reversed}

2. Run `KosarajuLoop` on G_{reversed}
 - Create a topological ordering on the meta graph

3. Create a relabeled version of the G called $G_{\text{relabeled}}$

4. Run `KosarajuLoop` on $G_{\text{relabeled}}$
 - Find all nodes with the same “leader”