Depth First Search and Topological Orderings

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives
• Discuss depth first search for graphs
• Discuss topological orderings

Exercise
• DFS run through
Depth-First Search

• Explore more \textit{aggressively}, and
• Backtrack when needed
• Linear time algorithm (again $O(m + n)$)

• Computes topological ordering (we’ll discuss this today)
FUNCTION DFS(G, start_vertex)
- found = {v: FALSE FOR v IN G.vertices}
- DFSRecursion(G, start_vertex, found)
RETURN found

FUNCTION DFSRecursion(G, v, found)
- found[v] = TRUE
- FOR vOther IN G.edges[v]
 - IF found[vOther] == FALSE
 - DFSRecursion(G, vOther, found)

Why is this non-recursive function necessary?

What kind of data structure would we need for an iterative version?
FUNCTION DFSRecursion(G, v, found)
 found[v] = TRUE
 FOR vOther IN G.edges[v]
 IF found[vOther] == FALSE
 DFSRecursion(G, vOther, found)

FUNCTION DFS(G, start_vertex)
 found = {v: FALSE FOR v in G.vertices}
 DFSRecursion(G, start_vertex, found)
 RETURN found

Given a tie, visit edges are in alphabetical order
FUNCTION DFSRecursion(G, v, found)
 found[v] = TRUE
 FOR vOther IN G.edges[v]
 IF found[vOther] == FALSE
 DFSRecursion(G, vOther, found)

Given a tie, visit edges are in alphabetical order
RUNNING TIME

\textbf{FUNCTION} \texttt{DFS}(G, \texttt{start_vertex})
\begin{align*}
\text{found} & = \{v: \text{FALSE FOR v IN G.\texttt{vertices}}\} \\
\text{DFSRecursion}(G, \texttt{start_vertex}, \text{found}) \\
\text{RETURN} & \text{found}
\end{align*}

\textbf{FUNCTION} \texttt{DFSRecursion}(G, v, \text{found})
\begin{align*}
\text{found}[v] & = \text{TRUE} \\
\text{FOR} & \text{vOther IN G.\texttt{edges}[v]} \\
\text{IF} & \text{found[vOther]} == \text{FALSE} \\
& \text{DFSRecursion}(G, \texttt{vOther}, \text{found})
\end{align*}

\textbf{What is the depth of the recursion tree?} \(O(n + m)\)
Definition: a topological ordering of a directed acyclic graph is a labelling of the graph’s vertices with “f-values” such that:

1. The f-values are of the set \(\{1, 2, \ldots, n\} \)
2. For an edge \((u, v)\) of \(G\), \(f(u) < f(v)\)
Topological Orderings

1. The f-values are of the set \(\{1, 2, \ldots, n\} \)
2. For an edge \((u, v)\) of \(G\), \(f(u) < f(v)\)
Topological Orderings
Topological Orderings

Can be used to graph a sequence of tasks while respecting all precedence constraints

• For example, a flow chart for your CS degrees
• I recently read a funding proposal where they were using topological orderings to schedule robot tasks for building a space station.

Requires the graph to be acyclic.

• Why?
Topological Orderings

1. The f-values are of the set \{1, 2, ..., n\}
2. For an edge \((u, v)\) of G, \(f(u) < f(v)\)

What if we add a cycle?
How to Compute Topological Orderings?

Straightforward solution:
1. Let v be any sink of G
2. Set $f(v) = |V|$
3. Recursively conduct the same procedure on $G - \{v\}$
1. Let v be any sink of G

2. Set $f(v) = |V|$

3. Recursively conduct the same procedure on $G - \{v\}$
1. Let v be any sink of G
2. Set $f(v) = |V|$
3. Recursively conduct the same procedure on $G - \{v\}$
1. Let v be any sink of G.
2. Set $f(v) = |V|$.
3. Recursively conduct the same procedure on $G - \{v\}$.
1. Let v be any sink of G
2. Set $f(v) = |V|$
3. Recursively conduct the same procedure on $G - \{v\}$
1. Let v be any sink of G
2. Set $f(v) = |V|$
3. Recursively conduct the same procedure on $G - \{v\}$
1. Let \(v \) be any sink of \(G \)
2. Set \(f(v) = |V| \)
3. Recursively conduct the same procedure on \(G - \{v\} \)
1. Let \(v \) be any sink of \(G \)
2. Set \(f(v) = |V| \)
3. Recursively conduct the same procedure on \(G - \{v\} \)
1. Let v be any sink of G
2. Set $f(v) = |V|$
3. Recursively conduct the same procedure on $G - \{v\}$
How to Compute Topological Orderings?

Straightforward solution:
1. Let v be any sink of G
2. Set $f(v) = |V|$
3. Recursively conduct the same procedure on $G - \{v\}$

How can we do this with our DFS algorithm if we don’t know which nodes are sinks?
Which nodes are sinks?
Which nodes are sinks? How can you find one using DFS? Do we need to remove it?

Does a single call to DFS label all nodes?
Solve with DFS

FUNCTION TopologicalOrdering(G)

found = {v: FALSE FOR v IN G.vertices}
fValues = {v: INFINITY FOR v IN G.vertices}
f = G.vertices.length

FOR v IN G.vertices

IF found[v] == FALSE

DFSTopological(G, v, found, f, fValues)

RETURN fValues

FUNCTION DFSTopological(G, v, found, f, fValues)

found[v] = TRUE

FOR vOther IN G.edges[v]

IF found[vOther] == FALSE

DFSTopological(G, vOther, found, f, fValues)

fValues[v] = f

f = f - 1
FUNCTION TopologicalOrdering(G)
 found = {v: FALSE FOR v IN G.vertices}
 fValues = {v: INFINITY FOR v IN G.vertices}
 f = G.vertices.length
 FOR v IN G.vertices
 IF found[v] == FALSE
 DFSTopological(G, v, found, f, fValues)
 RETURN fValues

FUNCTION DFSTopological(G, v, found, f, fValues)
 found[v] = TRUE
 FOR vOther IN G.edges[v]
 IF found[vOther] == FALSE
 DFSTopological(G, vOther, found, f, fValues)
 fValues[v] = f
 f = f - 1
Running Time

Again this algorithm is $O(n + m)$

\[
 \text{DFS} = O(n_\alpha + m_\alpha) + O(n_m + m_m) = O(n + m)
\]

We only consider each vertex once, and

We only consider each edge once (twice if you consider backtracking)
Correctness of DFS Topological Ordering

We need to show that for any \((u, v)\) that \(f(u) < f(v)\)

1. Consider the case when \(u\) is visited first
 1. We recursively look at all paths from \(u\) and label those vertices first
 2. So, \(f(u)\) must be less than \(f(v)\)

2. Now consider the case when \(v\) is visited first
 1. There is **no path back** to \(u\), so \(v\) gets labeled before we explore \(u\)
 2. Thus, \(f(u)\) must be less than \(f(v)\)

```FUNCTION DFSTopological(G, v, found, f, fValues)```

- `found[v] = TRUE`
- `FOR vOther IN G.edges[v]`
  - `IF found[vOther] == FALSE`
    - `DFSTopological(G, vOther, found, f, fValues)`
  - `fValues[v] = f`
- `f = f - 1`

How do we know that there is no path from \(v\) to \(u\)?
Topological Ordering

- We can use DFS to find a topological ordering since a DFS will search as far as it can until it needs to backtrack.
- It only needs to backtrack when it finds a sink.
- Sinks are the first values that must be labeled.