Breadth First Search

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives
- Discuss breadth first search for graphs

Exercises
- Continued from previous lecture slides
- Compute distance with Breadth-first search
Extra Resources

• Introduction to Algorithms, 3rd, Chapter 22
FUNCTION Connectivity(G, start_vertex)
 found = {v: FALSE FOR v IN G.vertices}
 found[start_vertex] = TRUE
 LOOP
 (vFound, vNotFound) = get_valid_edge(G.edges, found)
 IF vFound == NONE || vNotFound == NONE
 BREAK
 ELSE
 found[vNotFound] = TRUE
 RETURN found
How do we choose the next edge?
Two common (and well studied) options

Breadth-First Search
• Explore the graph in layers
• “Cautious” exploration
• Use a FIFO data structure (can you think of an example?)

Depth-First Search
• Explore recursively
• A more “aggressive” exploration (we backtrack if necessary)
• Use a LIFO data structure (or recursion)
FUNCTION BFS(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
visit_queue = [start_vertex]
WHILE visit_queue.length != 0
 vFound = visit_queue.pop()
 FOR vOther IN G.edges[vFound]
 IF found[vOther] == FALSE
 found[vOther] = TRUE
 visit_queue.add(vOther)
RETURN found

FUNCTION Connectivity(G, start_vertex)
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
LOOP
 (vFound, vNotFound) =
 get_valid_edge(G.edges, found)
 IF vFound == NONE || vNotFound == NONE
 BREAK
 ELSE
 found[vNotFound] = TRUE
RETURN found
Given a tie, visit edges are in alphabetical order.
FUNCTION BFS(G, start_vertex)
 found = {v: FALSE FOR v IN G.vertices}
 found[start_vertex] = TRUE
 visit_queue = [start_vertex]

 WHILE visit_queue.length != 0
 vFound = visit_queue.pop()
 FOR vOther IN G.edges[vFound]
 IF found[vOther] == FALSE
 found[vOther] = TRUE
 visit_queue.add(vOther)

 RETURN found

What is the running time?

What if we have n nodes and n-1 edges?

What if we have n nodes and m edges?

How many times to we consider each edge?

What if we have n nodes and m edges?

$O(n+m)$
FUNCTION BFS(G, start_vertex)
 found = {v: FALSE FOR v IN G.vertices}
 found[start_vertex] = TRUE
 visit_queue = [start_vertex]
 WHILE visit_queue.length != 0
 vFound = visit_queue.pop()
 FOR vOther IN G.edges[vFound]
 IF found[vOther] == FALSE
 found[vOther] = TRUE
 visit_queue.add(vOther)
 RETURN found

What is the running time?

What if we have n nodes and $n-1$ edges?

What if we have n nodes and m edges?

How many times do we consider each edge?

$$T_{BFS}(n, m) = O(n_s + m_s)$$

where n_s and m_s are the nodes and edges findable/connected from/to the start vertex.
Proof: BFS

Claim: BFS finds all nodes connected to the start node.

At the end of the BFS algorithm, v is marked found if there exists a path from s to v

- Note: this is just a special case of the general algorithm that we proved by contradiction
Question

The Shortest Path Problem

• How can we determine the fewest number of hops between the start vertex and all other connected vertices?
How can we determine the fewest number of hops between the start vertex and all other connected vertices?

FUNCTION BFS(G, start_vertex)

```plaintext
found = {v: FALSE FOR v IN G.vertices}
found[start_vertex] = TRUE
visit_queue = [start_vertex]

WHILE visit_queue.length != 0
  vFound = visit_queue.pop()
  FOR vOther IN G.edges[vFound]
    IF found[vOther] == FALSE
      found[vOther] = TRUE
      visit_queue.add(vOther)

RETURN found
```

Given a tie, visit edges are in alphabetical order
The Shortest Path Problem

Determine the fewest number of hops between the start vertex and all other vertices

Same algorithm as before with the following additions:
• Initialize the distances\(s\) as 0
• Initialize all other distances to infinity
• When considering an edge \((v, w)\)
 • If \(w\) is not found, then set \(\text{dist}(w)\) to \(\text{dist}(v) + 1\)
The Shortest Path Problem

Given a tie, visit edges are in alphabetical order

FUNCTION DistanceBFS(G, start_vertex)
 found = {v: FALSE FOR v IN G.vertices}
 found[start_vertex] = TRUE

 distances = {v: INFINITY FOR v IN G.vertices}
 distances[start_vertex] = 0

 visit_queue = [start_vertex]
 WHILE visit_queue.length != 0
 vFound = visit_queue.pop()
 FOR vOther IN G.edges[vFound]
 IF found[vOther] == FALSE
 found[vOther] = TRUE
 visit_queue.add(vOther)

 distances[vOther] = distances[vFound] + 1

RETURN distances

After we terminate, distances[v] = "the layer that v is in"
Connected Components

Let’s only consider undirected graphs for now

Let $G = (V, E)$ be an undirected graph

Goal: compute all connected components in $O(m + n)$

- A component is any group of vertices that can reach one another
- For example, if we are trying to see if a network has become disconnected

Exercise question 2:
How would you do this using our BFS procedure from before?
BFS Exercise Question 2

Func FC(G)
comps = []
found = Φ ... 3
For v in G.\V
If not found[v]
 nc = BFS(G, v)
 comps.append(nc)
update(found, nc)
Return comps

Diagram:

A -- C -- B -- E -- I
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
G -- H -- J -- K
FUNCTION FindComponents(G)
components = []
found = {v: FALSE FOR v IN G.vertices}
FOR v IN G.vertices
 IF NOT found[v]
 newly_found = BFS(G, v)
 new_component = {
 w FOR w, w_is_found IN newly_found
 IF w_is_found
 }
 component.append(new_component)

RETURN components