Graphs and Connectivity

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives
• Discuss the basics of graphs
• Introduce graph searching

Exercise
• Graph search
Extra Resources

• Introduction to Algorithms, 3rd, Chapter 22
Graphs

Represent pairwise relationships

Tons of uses

• Physical connections: roads (driving directions), network routing (phone), ...
• Relationship groups: social networks, similar purchases, ...
• Problem solving: each vertex may represent a partial part of the problem, and each edge is a step/move (e.g., Sudoku)

Tons of algorithms

• Cuts, clustering, searching, partitioning, contracting, ...
Graphs

For many reasons, graph algorithms are extremely important.

They are a ubiquitous tool for solving many engineering problems

- Signal traces on a PCB
- Balancing the load on a server
- Balancing the load across cores on a computer
- Scheduling the delivery of packages via drone
- Scheduling the path of an automated robot that is grabbing your Amazon purchase from shelves in a warehouse
- Topological networks
- Data mirroring across a network
- Modeling an ecology
- Modeling the nervous system
- The list goes on and on

For this reason, you will often be asked graph-related questions during interviews
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Operations</th>
<th>Unexplored</th>
<th>Open</th>
<th>Closed</th>
<th>Path</th>
<th>Length/Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dijkstra:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>?/?</td>
</tr>
<tr>
<td>A*:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>?/?</td>
</tr>
<tr>
<td>Breadth-First:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>?/?</td>
</tr>
<tr>
<td>Depth-First:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>?/?</td>
</tr>
</tbody>
</table>
BFS vs Dijkstra’s vs A*
\[G = (V, E) \]

\(G \) is the standard symbol representing a graph

\(V \) is the standard symbol representing a set of graph vertices \(|V| = n\)
- Vertices are also sometimes referred to as nodes

\(E \) is the standard symbol representing a set of graph edges \(|E| = m\)
- Each edge contains pointers to two vertices, for example: \((v1, v2)\)
- The order of the vertices may or may not matter
Directed and Undirected

Notation for Edges

Undirected

A — B

Directed

C — D

(A, B) or (B, A)

(C, D)
Graph Search and Connectivity

Goals:
• Find everything that is findable (a “path” from the start node exists)
• Don’t explore anything twice (don’t waste time)
• These operations are done in linear time,
• Note: it is often useful to consider O(n) algorithms as being “free”
 • (when compared to more complex tasks)
Findable
Findable
Findable
Findable
What is findable?

Depends on where you start!
What is findable?
Exercise Question 1
General Algorithm

FUNCTION Connectivity(G, start_vertex)
 found = {v: FALSE FOR v IN G.vertices}
 found[start_vertex] = TRUE
 LOOP
 (vFound, vNotFound) = get_valid_edge(G.edges, found)
 IF vFound == NONE || vNotFound == NONE
 BREAK
 ELSE
 found[vNotFound] = TRUE
 RETURN found

Find an edge where one vertex has been found and the other vertex has not been found.
General Algorithm Outline

Claim: at the end of this algorithm
- if v is found
- Then there exists a path from s to v

Proof by contradiction
- Suppose the graph G has a path p from the vertex s to the vertex v
- Also suppose that upon completion of the algorithm v was not found
- Thus, we have an edge (u, w) such that u is found, and w is not found
- This is **contradictory** to the termination condition of the algorithm
Suppose G has a path p from s to v
Also suppose that upon completion of the algorithm v was not found
Thus we have an edge (u, w) such that u is found and w is not found
This is contradictory to the termination condition of the algorithm
FUNCTION Connectivity(G, start_vertex)
 found = {v: FALSE FOR v IN G.vertices}
 found[start_vertex] = TRUE
 LOOP
 (vFound, vNotFound) = get_valid_edge(G.edges, found)
 IF vFound == NONE || vNotFound == NONE
 BREAK
 ELSE
 found[vNotFound] = TRUE
 RETURN found

Find an edge where one vertex has been found and the other vertex has not been found.
How do we choose the next edge?
Two **common** (and well studied) options

Breadth-First Search
- Explore the graph in **layers**
- “**Cautious**” exploration
- Use a FIFO data structure (can you think of an example?)

Depth-First Search
- Explore recursively
- A more “**aggressive**” exploration (we backtrack if necessary)
- Use a LIFO data structure (or recursion)