Lower Bound on Comparison-Based Sorting

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives

• Discuss a lower bound for the running time of all comparison-based sorting algorithms

Exercise

• Lower bound
Extra Resources

• Introduction to Algorithms, 3rd, Chapter 8
Comparison-Based Sorting

Claim: The worst-case, lower bound on comparison-based sorting is $\Omega(n \lg n)$

Comparison-based sorting methods:
- Merge sort, quicksort, heapsort, insertion sort, bubble sort, ...
- General purpose routines

Non-comparison-based sorting methods:
- Bucket sort, counting sort, radix sort, ...
- These methods look at the values (not just at the relative ordering)
- They assume something about the distribution of the data
- They can operate in linear time
Proof

• Consider an array of the values 1..n
• The array has \(n! \) different orderings (permutations)
• We can only use the results of comparisons to reorder elements
• Suppose an algorithm makes \(k \) comparisons
• We don’t know what \(k \) is just yet
• How many possible distinct comparisons sequences do we have?

\[2^k \]

• What is a reasonable upper bound on \(k \)?

\[n^2 \]

• What is the lower bound on \(k \)?

\[n \lg n \]
Given each of the $n!$ inputs and the k comparisons:

- We have 2^k distinct comparison sequences
- For each of the k comparison we can return value a or value b
- You can think of these comparisons as a decision tree

$$A = [a_1, a_2, a_3]$$

A is a decision tree with k comparisons:

Here are the possible comparisons:

k is the maximum depth of the tree.
How many leaves as a function of \(n \)? \(n! \)

What is the height of the tree as a function of \(k \)? \(k \)

What is the **maximum** number of leaves in a depth \(k \) **binary** tree? \(2^k \)

What is the minimum height of a **binary** tree with \(n! \) leaves? \(\lg(n!) \)
Let’s find a bound on k

What is bigger?

- The number of leaves with $n!$ numbers OR
- The maximum number of leaves for a tree of height k?
Let’s find a bound on k

What is bigger?
- The number of leaves with $n!$ numbers OR
- The maximum number of leaves for a tree of height k?

$$n! \leq 2^k$$

$$\ln(n!) \leq \ln(2^k)$$

$$\ln(n!) \leq k \cdot \ln(2)$$

$$\ln(n!) \leq k \cdot c_1$$

Number of leaves with n numbers

Maximum number of leaves with depth k (k Comparisons)

Might not have a “full” tree

Lower Bound!

Number of comparisons k is at least...
Let’s find a bound on \(k \)

\[
n \cdot \ln(n) - n + O(\ln(n)) \leq k \cdot c_1
\]

\[
n \cdot \ln(n) - n + O(\ln(n)) \leq n \cdot \ln(n) + O(\ln(n)) \leq k \cdot c_1
\]

\[
n \cdot \ln(n) + O(\ln(n)) \leq k \cdot c_1
\]

\[
n \cdot \ln(n) + O(\ln(n)) \leq n \cdot \ln(n) + c_2 n \ln(n) \leq k \cdot c_1
\]

\[
c_3 n \ln(n) \leq k \cdot c_1
\]

\[
\frac{c_3}{c_1} n \ln(n) \leq k
\]

\[
c_4 n \ln(n) \leq k
\]

\[
k = \Omega(n \ln(n))
\]