Lower Bound on Comparison-Based Sorting

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives
• Discuss a lower bound for the running time of all comparison-based sorting algorithms

Exercise
• Lower bound
Extra Resources

• Introduction to Algorithms, 3rd, Chapter 8
Comparison-Based Sorting

Claim: The worst-case, lower bound on comparison-based sorting is $\Omega(n \lg n)$

Comparison-based sorting methods:
- Merge sort, quicksort, heapsort, insertion sort, bubble sort, ...
- General purpose routines

Non-comparison-based sorting methods:
- Bucket sort, counting sort, radix sort, ...
- These methods look at the values (not just at the relative ordering)
- They assume something about the distribution of the data
- They can operate in linear time
Proof

- Consider an array of the values 1..n
 How many different orderings?
- The array has \(n! \) different orderings (permutations)
- We can only use the results of comparisons to reorder elements
- Suppose an algorithm makes \(k \) comparisons
- We don’t know what \(k \) is just yet
- How many possible distinct comparisons sequences do we have?
 We need an equation based on \(k \)
 \[2^k \]
- What is a reasonable upper bound on \(k \)?
 \[n^2 \]
- What is the lower bound on \(k \)?
 \[n \log n \]
Proof

Given each of the \(n! \) inputs and the \(k \) comparisons:
- We have \(2^k \) distinct comparison sequences
- For each of the \(k \) comparison we can return value a or value b
- You can think of these comparisons as a decision tree

\[A = [a_1, a_2, a_3] \]

\[
\begin{align*}
A[0] < A[1] & \quad \text{No} \\
\end{align*}
\]

\(k \) is the maximum depth of the tree
How many leaves as a function of n? $n!$

What is the height of the tree as a function of k? k

What is the maximum number of leaves in a depth k binary tree? 2^k

What is the minimum height of a binary tree with $n!$ leaves? $\lg(n!)$
Let’s find a bound on k

What is bigger?

- The number of leaves with $n!$ numbers OR
- The maximum number of leaves for a tree of height k?
Let’s find a bound on k

What is bigger?

• The number of leaves with $n!$ numbers OR
• The maximum number of leaves for a tree of height k?

$\ln(n!) \leq \ln(2^k)$

$\ln(n!) \leq k \cdot \ln(2)$

$\ln(n!) \leq k \cdot c_1$

Number of leaves with n numbers $\leq 2^k$

Maximum number of leaves with depth k (k Comparisons)

 Might not have a “full” tree

Lower Bound!

Number of comparisons k is at least...
Let’s find a bound on k

\[
\ln(n!) = n \cdot \ln(n) - n + O(\ln(n))
\]

\[
n \cdot \ln(n) - n + O(\ln(n)) \leq k \cdot c_1
\]

\[
n \cdot \ln(n) + O(\ln(n)) \leq k \cdot c_1
\]

\[
c_3 n \ln(n) \leq k \cdot c_1
\]

\[
\frac{c_3}{c_1} n \ln(n) \leq k
\]

\[
c_4 n \ln(n) \leq k
\]

\[
k = \Omega(n \ln(n))
\]