Quicksort Correctness Proof

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives

- Learn how quicksort works
- Learn how to partition an array

Exercise

- Quicksort loop invariant
Extra Resources

- https://me.dt.in.th/page/Quicksort/
- https://www.youtube.com/watch?v=ywWBy6J5gz8
- CLRS Chapter 7
- Algorithms Illuminated Chapter 5
What do we need to do?

Input: an array of n items in arbitrary order

Output: the same number in non-decreasing order

Assumptions: the items must be orderable (from an ordinal set)

Theorem: the Quicksort algorithm arranges all items in non-decreasing order.

1. Lemma involving **Partition**
2. Lemma involving **QuickSort**
| 31 | 47 | 11 | 91 | 67 | 23 | 89 | 51 |
Not a copy! (In-place)

(partition)

(doesn't match function from slides)
Not a copy!

(partition)

(base)

(base)
Not a copy!

11 23 31 51 89 67 91 47

(partition)

(base)

Not a copy!

11 23 31 51 89 67 91 47

(base)

(base)
Not a copy!

11 23 31 51 89 67 91 47

(partition)

doesn't match function from slides

11 23 31 51 89 67 91 47

base

Not a copy!

11 23 31 51 89 67 91 47

base

Not a copy!

11 23 31 51 89 67 91 47

base

11 23 31 47 51 91 67 89

11 23 31 47 51 91 67 89

11 23 31 47 51 91 67 89

11 23 31 47 51 67 89 91

11 23 31 47 51 67 89 91
 FUNCTION Partition(array, left_index, right_index)
 pivot_value = array[left_index]
 i = left_index + 1
 FOR j IN [left_index + 1 ..< right_index]
 IF array[j] < pivot_value
 swap(array, i, j)
 i = i + 1
 swap(array, left_index, i - 1)
 RETURN i - 1
Partition proof of correctness

<table>
<thead>
<tr>
<th>Value</th>
<th>67</th>
<th>44</th>
<th>…</th>
<th>21</th>
<th>-87</th>
<th>…</th>
<th>5</th>
<th>101</th>
<th>-31</th>
<th>…</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>0</td>
<td>1</td>
<td>…</td>
<td>left</td>
<td>left + 1</td>
<td>…</td>
<td>right - 1</td>
<td>right</td>
<td>right + 1</td>
<td>…</td>
<td>n - 1</td>
</tr>
</tbody>
</table>

FUNCTION Partition(array, left_index, right_index)

pivot_value = array[left_index]

i = left_index + 1

FOR j IN [left_index + 1 ..< right_index]

IF array[j] < pivot_value

swap(array, i, j)

i = i + 1

swap(array, left_index, i - 1)

RETURN i - 1

How do we prove that Partition is correct?
Loop Invariant Proofs

1. State the loop invariant
 1. A statement that can be easily proven true or false
 2. The statement should reference the purpose of the loop
 3. The statement should reference variables that change each iteration

2. Show that the loop invariant is true before the loop starts

3. Show that the loop invariant holds when executing any iteration

4. Show that the loop invariant holds once the loop ends
Partition proof of correctness

<table>
<thead>
<tr>
<th>Value</th>
<th>67</th>
<th>44</th>
<th>21</th>
<th>-87</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>0</td>
<td>1</td>
<td>left</td>
<td>left + 1</td>
<td>...</td>
</tr>
</tbody>
</table>

FUNCTION Partition(array, left_index, right_index)

pivot_value = array[left_index]

\[i = left_index + 1\]

FOR j **IN** [left_index + 1 .. < right_index]

IF array[j] < pivot_value

\[\text{swap}(\text{array}, i, j)\]

\[i = i + 1\]

\[\text{swap}(\text{array}, \text{left_index}, i - 1)\]

RETURN i - 1

1. State the loop invariant

A statement that can be easily proven true or false

2. Show that the loop invariant is true before the loop starts

3. Show that the loop invariant holds when executing any iteration

4. Show that the loop invariant holds once the loop ends

Initialization

Maintenance

Termination
Partition proof of correctness

<table>
<thead>
<tr>
<th>Value</th>
<th>67</th>
<th>44</th>
<th>...</th>
<th>21</th>
<th>-87</th>
<th>...</th>
<th>5</th>
<th>101</th>
<th>-31</th>
<th>...</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>0</td>
<td>1</td>
<td>...</td>
<td>left</td>
<td>left + 1</td>
<td>...</td>
<td>right - 1</td>
<td>right</td>
<td>right + 1</td>
<td>...</td>
<td>n - 1</td>
</tr>
</tbody>
</table>

FUNCTION Partition(array, left_index, right_index)

pivot_value = array[left_index]

i = left_index + 1

FOR j IN [left_index + 1 ..< right_index]

 IF array[j] < pivot_value
 swap(array, i, j)
 i = i + 1

swap(array, left_index, i - 1)

RETURN i - 1

Loop Invariant: At the start of the iteration with indices i and j:
1. All items in array[l+1 ..= i-1] are < pivot_value
2. All items in array[i ..= j-1] are ≥ pivot_value
Partition Proof

Loop Invariant: At the start of the iteration with indices i and j:
1. All items in \(a[l+1 ..= i-1] \) are < pivot
2. All items in \(a[i ..= j-1] \) are ≥ pivot

FUNCTION Partition(a, l, r)

 pivot_value = a[l]
 i = l + 1

 FOR j IN [l + 1 ..< r]
 IF a[j] < pivot_value
 swap(a, i, j)
 i = i + 1

 swap(a, l, i - 1)

 RETURN i - 1
Partition Proof

Initialization: Show that the loop invariant is true before the loop starts

1. No numbers in \(a[l+1 ..= i-1] \)
2. No numbers in \(a[i ..= j-1] \)

Loop Invariant: At the start of the iteration with indices \(i \) and \(j \):
1. All items in \(a[l+1 ..= i-1] \) are < pivot
2. All items in \(a[i ..= j-1] \) are ≥ pivot

FUNCTION \(\text{Partition}(a, l, r) \)

\[
pivot_value = a[l] \\
i = l + 1 \\
\text{FOR } j \text{ IN } [l + 1 ..< r] \\
\text{IF } a[j] < pivot_value \\
\quad \text{swap}(a, i, j) \\
\quad i = i + 1 \\
\text{swap}(a, l, i - 1) \\
\text{RETURN } i - 1
\]
Function Partition(a, l, r)
1. pivot_value = a[l]
2. i = l + 1
3. FOR j IN [l + 1 ..< r]
 - IF a[j] < pivot_value
 - swap(a, i, j)
 - i = i + 1
 - swap(a, l, i - 1)
4. RETURN i - 1

Loop Invariant: At the start of the iteration with indices i and j:
1. All items in a[l+1 ..= i-1] are < pivot
2. All items in a[i ..= j-1] are ≥ pivot

Maintenance (case 1): Show that the loop invariant holds when executing any iteration
• Suppose conditions 1 and 2 are met.
• Now, suppose a[j] < pivot
Partition Proof

FUNCTION Partition(a, l, r)

\[\text{pivot_value} = a[l] \]

\[i = l + 1 \]

\[\text{FOR } j \text{ IN } [l + 1 \ldots < r] \]

\[\text{IF } a[j] < \text{pivot_value} \]

\[\text{swap}(a, i, j) \]

\[i = i + 1 \]

\[\text{swap}(a, l, i - 1) \]

\[\text{RETURN } i - 1 \]

Loop Invariant: At the start of the iteration with indices i and j:
1. All items in \([l+1 \ldots i-1]\) are < pivot
2. All items in \([i \ldots j-1]\) are ≥ pivot

Maintenance (case 1):
- Suppose conditions 1 and 2 are met.
- Now, suppose \(a[j] < \text{pivot}\)
- Then \(a[j]\) and \(a[i]\) are swapped
- By (2), \(a[i]\) was > pivot so now \(a[i] < \text{pivot}\) and \(a[j] > \text{pivot}\)
Partition Proof

![Partition Proof Diagram]

Maintenance (case 1):
- Suppose conditions 1 and 2 are met.
- Now, suppose $a[j] < \text{pivot}$
- Then $a[j]$ and $a[i]$ are swapped
- By (2), $a[i]$ was $> \text{pivot}$ so now $a[i] < \text{pivot}$ and $a[j] > \text{pivot}$

Loop Invariant: At the start of the iteration with indices i and j:
1. All items in $a[l+1 \ldots i-1]$ are $< \text{pivot}$
2. All items in $a[i \ldots j-1]$ are $\ge \text{pivot}$

FUNCTION Partition(a, l, r)

pivot_value = $a[l]$

$i = l + 1$

FOR j IN $[l + 1 \ldots < r]$

TRUE

IF $a[j] < \text{pivot_value}$

swap(a, i, j)

$i = i + 1$

swap($a, l, i - 1$)

RETURN $i - 1$
FUNCTION Partition(a, l, r)
 pivot_value = a[l]
 i = l + 1
 FOR j IN [l + 1 ..< r]
 IF a[j] < pivot_value
 swap(a, i, j)
 i = i + 1
 swap(a, l, i - 1)
 RETURN i - 1

Loop Invariant: At the start of the iteration with indices i and j:
1. All items in a[l+1 ..= i-1] are < pivot
2. All items in a[i ..= j-1] are ≥ pivot

Maintenance (case 1):
- Suppose conditions 1 and 2 are met.
- Now, suppose a[j] < pivot
- Then a[j] and a[i] are swapped
- By (2), a[i] was > pivot so now a[i] < pivot and a[j] > pivot
- Incrementing i and j satisfies 1 and 2
Partition Proof

FUNCTION `Partition(a, l, r)`

- `pivot_value = a[l]`
- `i = l + 1`
- `FOR j IN [l + 1 ..< r]`
 - `IF a[j] < pivot_value`
 - `swap(a, i, j)`
 - `i = i + 1`
 - `swap(a, l, i - 1)`
- `RETURN i - 1`

Loop Invariant: At the start of the iteration with indices i and j:
1. All items in `a[l+1 ..= i-1]` are < `pivot`
2. All items in `a[i ..= j-1]` are ≥ `pivot`

Maintenance (case 2):
- Suppose conditions 1 and 2 are met.
- Now, suppose `a[j] ≥ pivot`
Partition Proof

FUNCTION Partition(a, l, r)
 pivot_value = a[l]
 i = l + 1
 FOR j IN [l + 1 ..< r]
 IF a[j] < pivot_value
 swap(a, i, j)
 i = i + 1
 swap(a, l, i - 1)
 RETURN i - 1

Loop Invariant: At the start of the iteration with indices i and j:
1. All items in a[l+1 ..= i-1] are < pivot
2. All items in a[i ..= j-1] are ≥ pivot

Maintenance (case 2):
• Suppose conditions 1 and 2 are met.
• Now, suppose a[j] ≥ pivot
• We do not change i so (1) holds
FUNCTION Partition(a, l, r)
 pivot_value = a[l]
 i = l + 1
 FOR j IN [l + 1 ..< r]
 IF a[j] < pivot_value
 swap(a, i, j)
 i = i + 1
 swap(a, l, i - 1)
 RETURN i - 1

Loop Invariant: At the start of the iteration with indices i and j:
1. All items in a[l+1 ..= i-1] are < pivot
2. All items in a[i ..= j-1] are ≥ pivot

Maintenance (case 2):
- Suppose conditions 1 and 2 are met.
- Now, suppose a[j] ≥ pivot
- We do not change i so (1) holds
- We increment j so (2) holds
Partition Proof

FUNCTION Partition(a, l, r)

```plaintext
pivot_value = a[l]
i = l + 1
FOR j IN [l + 1 ..< r]
    IF a[j] < pivot_value
        swap(a, i, j)
i = i + 1
    swap(a, l, i - 1)
RETURN i - 1
```

Loop Invariant: At the start of the iteration with indices i and j:
1. All items in a[l+1 ..= i-1] are < pivot
2. All items in a[i ..= j-1] are ≥ pivot

Termination: Show that the loop invariant holds once the loop ends

- Assume (1) and (2) are true
- Now j = r
- All items have been considered
- All items in a[l+1 ..= i-1] are < pivot
- All items in a[i ..= j-1] are ≥ pivot
FUNCTION Partition(a, l, r)

pivot_value = a[l]

i = l + 1

FOR j IN [l + 1 ..< r]

 IF a[j] < pivot_value
 swap(a, i, j)
 i = i + 1

swap(a, l, i - 1)

RETURN i - 1

Loop Invariant: At the start of the iteration with indices i and j:
1. All items in a[l+1 ..= i-1] are < pivot
2. All items in a[i ..= j-1] are ≥ pivot

After the loop we perform the final swap
What do we need to do?

Input: an array of n items in arbitrary order
Output: the same number in non-decreasing order
Assumptions: the items must be orderable (from an ordinal set)

Theorem: the Quicksort algorithm arranges all items in non-decreasing order.

1. **Lemma:** see proof by loop invariant of **Partition**
2. **Lemma** involving **QuickSort**
Theorem: the Quicksort algorithm arranges all items in non-decreasing order.

1. **Lemma 1:**

 Loop Invariant: At the start of the iteration with indices i and j:

 1. All items in $\text{array}[l+1 ..= i-1]$ are $< \text{pivot_value}$
 2. All items in $\text{array}[i ..= j-1]$ are $\geq \text{pivot_value}$

 (See corresponding proof by loop invariant)

1. **Lemma 2 involving QuickSort**
Proof by Induction in General

Some property P that we want to prove

• A base case: some statement regarding $P(1)$
• An inductive hypothesis: assume we know that $P(n)$ is true
• An inductive step: if $P(n)$ is correct then so is $P(n+1)$ because...

For quicksort we are going to use a slightly different form

• If $P(k)$ where $k < n$ is correct, then $P(n)$ is also correct
• An inductive hypothesis: assume we know that $P(k)$ is true
• An inductive step: if $P(k)$ is correct then so is $P(n)$ because...
Proof by induction that $P(n)$ holds for all n

1. $P(1)$ holds because <something about the code/problem>
2. Let’s assume that $P(k)$ (where $k < n$) holds.
3. $P(n)$ holds because of $P(k)$ and <something about the code>
4. Thus, by induction, $P(n)$ holds for all n

We can infer all intermediate jumps due to steps 1 and 3.
Quicksort Proof

Proof by induction that \(P(n) \) holds for all \(n \)

• \(P(1) \) holds because ...
• Let’s assume that \(P(k) \) (where \(k < n \)) holds.
• \(P(n) \) holds because of \(P(k) \) and ...
• Thus, by induction, \(P(n) \) holds for all \(n \)

\[P(n) = \]
Quicksort Proof

P(n) = arranges all items in non-decreasing order.

• P(1)

Proof by induction that P(n) holds for all n
• P(1) holds because ...
• Let’s assume that P(k) (where k < n) holds.
• P(n) holds because of P(k) and ...
• Thus, by induction, P(n) holds for all n
Proof by induction that $P(n)$ holds for all n

- $P(1)$ holds because ...
- Let’s assume that $P(k)$ (where $k < n$) holds.
- $P(n)$ holds because of $P(k)$ and ...
- Thus, by induction, $P(n)$ holds for all n

Quicksort Proof

$P(n) =$ arranges all items in non-decreasing order.

- $P(1)$ is an array of one element, and any such array is always sorted.
- **Assume (hypothesis)**
- $P(n)$ holds because:
Proof by induction that $P(n)$ holds for all n

- $P(1)$ holds because ...
- Let’s assume that $P(k)$ (where $k < n$) holds.
- $P(n)$ holds because of $P(k)$ and ...
- Thus, by induction, $P(n)$ holds for all n

Quicksort Proof

$P(n) = \text{arranges all items in non-decreasing order.}$

- $P(1)$ is an array of one element, and any such array is always sorted.
- Assume (hypothesis) that $P(k)$ is correct for $k < n$
- $P(n)$ holds because:
 - Let k_{left}, k_{right} = the lengths of the left and right subarrays
 - k_{left}, $k_{\text{right}} < n$ (strictly less than n)
 - By our inductive hypothesis, the left and right subarrays are correctly sorted
 - The partition loop-invariant guarantees that the pivot is in the correct spot
Proof by induction that $P(n)$ holds for all n

- $P(1)$ holds because ...
- Let’s assume that $P(k)$ (where $k < n$) holds.
- $P(n)$ holds because of $P(k)$ and ...
- Thus, by induction, $P(n)$ holds for all n

Quicksort Proof

$P(n) = \text{arranges all items in non-decreasing order.}$

- **Base case**
 - $P(1)$ is an array of one element, and any such array is always sorted.

- **Inductive Hypothesis**
 - Assume (hypothesis) that $P(k)$ is correct for $k < n$

- **Inductive Step**
 - $P(n)$ holds because:
 - Let $k_{\text{left}}, k_{\text{right}} = \text{the lengths of the left and right subarrays}$
 - $k_{\text{left}}, k_{\text{right}} < n$ (strictly less than n)
 - By our *inductive hypothesis*, the left and right subarrays are correctly sorted
 - The *partition loop-invariant* guarantees that the pivot is in the correct spot
Theorem: the Quicksort algorithm arranges all items in non-decreasing order.

1. **Lemma 1**:
 Loop Invariant: At the start of the iteration with indices i and j:
 1. All items in $\text{array}[1+1 ..= i-1]$ are $< \text{pivot}_\text{value}$
 2. All items in $\text{array}[i ..= j-1]$ are $\geq \text{pivot}_\text{value}$
 (See corresponding proof by loop invariant)

1. **Lemma 2**:
 $P(n) =$ Quicksort arranges all items in non-decreasing order.
 (See corresponding proof by induction)