Closest Pair Algorithm

https://cs.pomona.edu/classes/cs140/
Notes

• Assignment due tomorrow
• Checkpoint 1 next Wednesday
• Slack, checked out pinned messages
Outline

Topics and Learning Objectives

• Learn more about Divide and Conquer paradigm
• Learn about the closest-pair problem and its $O(n \lg n)$ algorithm
 • Gain experience analyzing the run time of algorithms
 • Gain experience proving the correctness of algorithms

Exercises

• Closest Pair
Closest Pair Problem

• **Input**: \(P \), a set of \(n \) points that lie in a (two-dimensional) plane

• **Output**: a pair of points \((p, q)\) that are the “closest”
 - Distance is measured using Euclidean distance:

\[
d(p, q) = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}
\]
Closest Pair Problem

- What is the brute force method for this search?
- What is the asymptotic running time of the brute force method?

Can we do better than $O(n^2)$?
One-dimensional closest pair

How would you find the closest two points?
• Sort by position : $O(n \lg n)$
• Return the closest two using a linear scan : $O(n)$
• Total time : $O(n \lg n) + O(n) = O(n \lg n)$

Any problems using this approach for the two-dimensional case?
• How do you sort the points?
• Sorting does not generalize to higher dimensions!
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?

3. Which two are closest?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?

3. Which two are closest?
1. Create a copy of the points (we now have two separate copies of P)
 1. Sort by x-coordinate
 2. Sort other by y-coordinate

$O(n \lg n)$
P : [p(1,10), p(2,8), p(7,3), p(5,7), p(8,4), p(3,5), p(10,9), p(9,1)]

Sorted by x coordinate

Px : [p(1,10), p(2,8), p(3,5), p(5,7), p(7,3), p(8,4), p(9,1), p(10,9)]

Sorted by y coordinate

Py : [p(9,1), p(7,3), p(4,8), p(5,5), p(3,5), p(7,3), p(2,8), p(10,9), p(1,10)]
Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
 1. Sort by x-coordinate
 2. Sort other by y-coordinate

- Can we still end up with a $O(n \lg n)$ algorithm for finding the closest pair?
- Does the closeness of two points on one axis matter?
1. FUNCTION FindClosestPair(points)
2. points_x = copy_and_sort_by_x(points)
3. points_y = copy_and_sort_by_y(points)
4. RETURN ClosestPair(points_x, points_y)
Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
 1. Sort by x-coordinate
 2. Sort other by y-coordinate

 - Can we still end up with a $O(n \lg n)$ algorithm for finding the closest pair?
 - Does the closeness of two points on one axis matter?

2. Apply the Divide-and-Conquer method
Divide-and-Conquer

1. **DIVIDE** into smaller subproblems
2. **CONQUER** the subproblems via recursive calls
3. **COMBINE** solutions from the subproblems

• How would you divide the problems?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?

3. Which two are closest?

4. How would you divide the search space?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?

3. Which two are closest?

4. How would you divide the search space?

This is not the average x-value
1. **FUNCTION** ClosestPair(px, py)

2. \(n = \text{px}.\text{length} \)

3. \(\text{IF } n == 2 \)

4. \(\text{RETURN } \text{px}[0], \text{px}[1], \text{dist}(\text{px}[0], \text{px}[1]) \)

5.

6.

7.

8. \(pl, ql, dl = \text{ClosestPair}(\text{left}_\text{px}, \text{left}_\text{py}) \)

9.

10.

11.

12. \(pr, qr, dr = \text{ClosestPair}(\text{right}_\text{px}, \text{right}_\text{py}) \)

How do we create these arrays?
1. How do we create left_px?
2. How do we create right_px?
3. How do we create left_py?
4. How do we create right_py?
FUNCTION ClosestPair(px, py)

n = px.length

IF n == 2
 RETURN px[0], px[1], dist(px[0], px[1])

left_px = px[0 ..< n//2]
left_py = [p FOR p IN py IF p.x < px[n//2].x]
pl, ql, dl = ClosestPair(left_px, left_py)

right_px = px[n//2 ..< n]
right_py = [p FOR p IN py IF p.x ≥ px[n//2].x]
pr, qr, dr = ClosestPair(right_px, right_py)
Any problems with our current approach?
1. FUNCTION ClosestPair(px, py)
2. n = px.length
3. IF n == 2
4. RETURN px[0], px[1], dist(px[0], px[1])
5.
6. left_px = px[0..< n//2]
7. left_py = [p FOR p IN py IF p.x < px[n//2].x]
8. pl, ql, dl = ClosestPair(left_px, left_py)
9.
10. right_px = px[n//2..< n]
11. right_py = [p FOR p IN py IF p.x ≥ px[n//2].x]
12. pr, qr, dr = ClosestPair(right_px, right_py)
13.
14. d = min(dl, dr)
15. ps, qs, ds = ClosestSplitPair(px, py, d)
16.
17. RETURN Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)

What time complexity does this process need such that the overall algorithm runs in O(n lg n)?

Hint: think about Merge Sort.
Exercise Question 1

Running time needed for ClosestSplitPair?
Merge Sort and Its Recurrence Equation

Function $MS(\text{array})$

- Base
- Sort left
- Sort right
- Merge left right
- Return

$T(n) = 2T(\frac{n}{2}) + O(n)$

$O(n \log n)$
FUNCTION RecursiveFunction(some_input)
 IF base_case:
 # Usually O(1)
 RETURN base_case_work(some_input)
 # Two recursive calls, each with half the data
 one = RecursiveFunction(some_input.first_half)
 two = RecursiveFunction(some_input.second_half)
 # Combine results from recursive calls (usually O(n))
 one_and_two = Combine(one, two)
 RETURN one_and_two

T(\frac{n}{2}) \cdot 2
O(n \log n)
1. **FUNCTION** ClosestPair(px, py)
2. \[n = \text{px}.\text{length} \]
3. **IF** \[n == 2 \]
4. **RETURN** \[\text{px}[0], \text{px}[1], \text{dist} (\text{px}[0], \text{px}[1]) \]
5.
6. \[\text{left}_\text{px} = \text{px}[0 .. < \text{n}/2] \]
7. \[\text{left}_\text{py} = [p \text{ FOR } p \text{ IN } \text{py} \text{ IF } p.x < \text{px}[\text{n}/2].x] \]
8. \[\text{pl}, \text{ql}, \text{dl} = \text{ClosestPair}(\text{left}_\text{px}, \text{left}_\text{py}) \]
9.
10. \[\text{right}_\text{px} = \text{px}[\text{n}/2 .. < \text{n}] \]
11. \[\text{right}_\text{py} = [p \text{ FOR } p \text{ IN } \text{py} \text{ IF } p.x \geq \text{px}[\text{n}/2].x] \]
12. \[\text{pr}, \text{qr}, \text{dr} = \text{ClosestPair}(\text{right}_\text{px}, \text{right}_\text{py}) \]
13.
14. \[d = \text{min}(\text{dl}, \text{dr}) \]
15. \[\text{ps}, \text{qs}, \text{ds} = \text{ClosestSplitPair}(\text{px}, \text{py}, d) \]
16.
17. **RETURN** \[\text{Closest} (\text{pl}, \text{ql}, \text{dl}, \text{pr}, \text{qr}, \text{dr}, \text{ps}, \text{qs}, \text{ds}) \]
Key Idea

• In ClosestSplitPair we only need to check for pairs that are closer than those found in the recursive calls to ClosestPair

• This is easier (faster) than trying to find the closest split pair without any extra information!

\[\delta = \min[d(p_l, q_l), d(p_r, q_r)] \]
FUNCTION ClosestSplitPair(px, py, d)
 n = px.length
 x_median = px[n//2].x
 middle_py = [p FOR p IN py IF x_median - d < p.x < x_median + d]

 closest_d = INFINITY, closest_p = closest_q = NONE
 FOR i IN [0..< middle_py.length - 1]
 FOR j IN [1..= min(7, middle_py.length - i)]
 p = middle_py[i], q = middle_py[i + j]
 IF dist(p, q) < closest_d
 closest_d = dist(p, q)
 closest_p = p, closest_q = q

 RETURN closest_p, closest_q, closest_d

closest_d = \infty
FUNCTION ClosestSplitPair(px, py, d)
 n = px.length
 x_median = px[n//2].x
 middle_py = [p FOR p IN py
 IF x_median - d < p.x < x_median + d]
 closest_d = INFINITY, closest_p = closest_q = NONE
 FOR i IN [0 ..< middle_py.length - 1]
 FOR j IN [1 ..= min(7, middle_py.length - i)]
 p = middle_py[i], q = middle_py[i + j]
 IF dist(p, q) < closest_d
 closest_d = dist(p, q)
 closest_p = p, closest_q = q
 RETURN closest_p, closest_q, closest_d
Exercise Question 2

Running Time of Nested For-Loops
FUNCTION ClosestSplitPair(px, py, d)

n = px.length
x_median = px[n//2].x
middle_py = [p FOR p IN py
 IF x_median - d < p.x < x_median + d]

closest_d = INFINITY, closest_p = closest_q = NONE
FOR i IN [0 .. < middle_py.length - 1]
 FOR j IN [1 .. = min(7, middle_py.length - i)]
 p = middle_py[i], q = middle_py[i + j]
 IF dist(p, q) < closest_d
 closest_d = dist(p, q)
 closest_p = p, closest_q = q

RETURN closest_p, closest_q, closest_d

\[y = \frac{1}{3} \]
Claim

Let \(p \in \text{left}, q \in \text{right} \) be a split pair with \(d(p, q) < d \).

Then

A. \(p \) and \(q \) ∈ \text{middle_py}, and
B. \(p \) and \(q \) are at most 7 positions apart in \text{middle_py}.

If the claim is true:

Corollary 1: If the closest pair of \(P \) is in a split pair, then our \text{ClosestSplitPair} procedure finds it.

Corollary 2: \text{ClosestPair} is correct and runs in \(O(n \lg n) \) same recursion tree as merge sort.
Proof—Part A

Let \(p \in \text{left}, \ q \in \text{right} \) be a split pair with \(d(p, q) < d \)

Then

A. \(p \) and \(q \) ∈ \(\text{middle}_\text{py} \), and

If \(p = (x_1, y_1) \in \text{left AND} \ q = (x_2, y_2) \in \text{right AND} \ d(p, q) < d \)

Then

\[
\begin{align*}
x_{\text{median}} - d &< x_1 \leq x_{\text{median}} \text{ and } \\
x_{\text{median}} &\leq x_2 < x_{\text{median}} + d
\end{align*}
\]

Otherwise, \(p \) and \(q \) would not be the closest pair with \(d(p, q) < d \)
Proof—Part A

Let $p \in \text{left}, q \in \text{right}$ be a split pair with $d(p, q) < d$

Then

A. p and $q \in \text{middle}_py$, and

If $p = (x_1, y_1) \in \text{left AND} q = (x_2, y_2) \in \text{right AND} d(p,q) < d$

Then

$$x_{\text{median}} - d < x_1 \leq x_{\text{median}} \quad \text{and} \quad x_{\text{median}} \leq x_2 < x_{\text{median}} + d$$

Otherwise, p and q would not be the closest pair with $d(p, q) < d$
Claim

Let \(p \in \text{left}, q \in \text{right} \) be a split pair with \(d(p, q) < d \). Then

A. \(p \) and \(q \) \(\in \) \text{middle}_\text{py}, and
B. \(p \) and \(q \) are at most 7 positions apart in \text{middle}_\text{py}

If the claim is true:

Corollary 1: If the closest pair of \(P \) is in a split pair, then our \text{ClosestSplitPair} procedure finds it.

Corollary 2: \text{ClosestPair} is correct and runs in \(O(n \log n) \) same recursion tree as merge sort
Sorted by y

middle_py

pl

dl

q1

pr

qr

dr

p

q

x_median

d

d
Proof—Part B

p and q are at most 7 positions apart in \textit{middle}_py

How many other points can possibly be in this area?

\[\min[y_1, y_2] \]
Proof—Part B

p and q are at most 7 positions apart in \textit{middle}_py

\textbf{Lemma 1}: All points of \textit{middle}_py with a y-coordinate between those of p and q lie within those 8 boxes.

\textbf{Proof}:

1. First, recall that the y-coordinate of p, q differs by less than d.
2. Second, by definition of \textit{middle}_py, all have an x-coordinate between x_median +/- \delta.
Proof—Part B

p and q are at most 7 positions apart in middle_py

Lemma 1: All points of middle_py with a y-coordinate between those of p and q lie within those 8 boxes.

Lemma 2: At most one point of P can be in each box.

Proof: By contradiction. Suppose points a and b lie in the same box. Then

1. a and b are either both in L or both in R
2. \(d(a, b) \leq \frac{d}{2} \sqrt{2} < d \)

This is a contradiction! How did we define d?
Max distance within box is $d/\sqrt{2}$
Claim \hspace{1cm} \textit{Proved}

Let \(p \in \text{left}, \ q \in \text{right} \) be a split pair with \(d(p, q) < d \)

Then:

A. \(p \) and \(q \) \(\in \) \text{midle}_py, and
B. \(p \) and \(q \) are at most 7 positions apart in \text{middle}_py

If the claim is true:

\textbf{Corollary 1}: If the closest pair of \(P \) is in a split pair, then \texttt{ClosestSplitPair} procedure finds it.

\textbf{Corollary 2}: \texttt{ClosestPair} is correct and runs in \(O(n \log n) \) same recursion tree as merge sort
Closest Pair

1. Copy P and sort one copy by x and the other copy by y in $O(n \lg n)$
2. Divide P into a left and right in $O(n)$
3. Conquer by recursively searching left and right
4. Look for the closest pair in middle$_py$ in $O(n)$
 - Must filter by x
 - And scan through middle$_py$ by looking at adjacent points
Closest Split Pair

$km + d$
Pink: x.m
Shaded: middle.py
FUNCTION ClosestPair(px, py)

O(1) n = px.length

O(1) IF n == 2

O(1) RETURN px[0], px[1], dist(px[0], px[1])

O(n) left_px = px[0 ..< n//2]

O(n) left_py = [p FOR p IN py IF p.x < px[n//2].x]

T(n/2) pl, ql, dl = ClosestPair(left_px, left_py)

O(n) right_px = px[n//2 ..< n]

O(n) right_py = [p FOR p IN py IF p.x ≥ px[n//2].x]

T(n/2) pr, qr, dr = ClosestPair(right_px, right_py)

O(1) d = min(dl, dr)

O(n) ps, qs, ds = ClosestSplitPair(px, py, d)

O(1) RETURN Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)
FUNCTION MergeSort(array)

n = array.length

IF n == 1

RETURN array

left_sorted = MergeSort(array[0 ..< n/2])

right_sorted = MergeSort(array[n/2 ..< n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

T(n) = 2 T(n/2) + O(n)

= O(n lg n)
FUNCTION RecursiveFunction(some_input)

IF base_case:
 # Usually O(1)
 RETURN base_case_work(some_input)

 # Two recursive calls, each with half the data
 one = RecursiveFunction(some_input.first_half)
 two = RecursiveFunction(some_input.second_half)

 # Combine results from recursive calls (usually O(n))
 one_and_two = Combine(one, two)

RETURN one_and_two

T(n) = 2 \cdot T(n/2) + O(n)
 = O(n \cdot \lg n)