Closest Pair Algorithm

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives

• Learn more about Divide and Conquer paradigm

• Learn about the closest-pair problem and its $O(n \lg n)$ algorithm
 • Gain experience analyzing the run time of algorithms
 • Gain experience proving the correctness of algorithms

Exercise

• Closest Pair
Extra Resources

• Algorithms Illuminated: Part 1: Chapter 3
Closest Pair Problem

• **Input**: \(P \), a set of \(n \) points that lie in a (two-dimensional) plane

• **Output**: a pair of points \((p, q) \) that are the “closest”
 • Distance is measured using Euclidean distance:

\[
d(p, q) = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}
\]

• **Assumptions**: None
Closest Pair Problem

- What is the brute force method for this search?
- What is the asymptotic running time of the brute force method?

Can we do better than $O(n^2)$?
One-dimensional closest pair

How would you find the closest two points?
• Sort by position: $O(n \lg n)$
• Return the closest two using a linear scan: $O(n)$
• Total time: $O(n \lg n) + O(n) = O(n \lg n)$

Any problems using this approach for the two-dimensional case?
• How do you sort the points?
• Sorting does not generalize to higher dimensions!
1. Which two are closest on the y-axis?
1. Which two are closest on the y-axis?
1. Which two are closest on the y-axis?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?

3. Which two are closest?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?

3. Which two are closest?
Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
 1. Sort by x-coordinate
 2. Sort other by y-coordinate

Now we know we can’t do better than $O(n \lg n)$
\[
P = [(1,10), (2,8), (7,3), (5,7), (8,4), (3,5), (10,9), (9,1)]
\]
Sorted by x coordinate

\[
P_x = [(1,10), (2,8), (3,5), (5,7), (7,3), (8,4), (9,1), (10,9)]
\]
Sorted by y coordinate

\[
P_y = [(9,1), (7,3), (8,4), (3,5), (5,7), (2,8), (10,9), (1,10)]
\]
Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
 1. Sort by x-coordinate
 2. Sort other by y-coordinate

 $O(n \lg n)$

- Can we still end up with a $O(n \lg n)$ algorithm for finding the closest pair?
- Does the closeness of two points on one axis matter?
1. FUNCTION FindClosestPair(points)
2. points_x = copy_and_sort_by_x(points)
3. points_y = copy_and_sort_by_y(points)
4. RETURN ClosestPair(points_x, points_y)
Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
 1. Sort by x-coordinate
 2. Sort other by y-coordinate

 • Can we still end up with a $O(n \log n)$ algorithm for finding the closest pair?
 • Does the closeness of two points on one axis matter?

2. Apply the Divide-and-Conquer method
Divide-and-Conquer

1. **DIVIDE** into smaller subproblems
2. **CONQUER** the subproblems via recursive calls
3. **COMBINE** solutions from the subproblems

• How would you divide the problems?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?

3. Which two are closest?

4. How would you divide the search space?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?

3. Which two are closest?

4. How would you divide the search space?

This is not the average x-value
1. **FUNCTION** ClosestPair(px, py)
2. \[n = \text{px}.\text{length} \]
3. \[\text{IF } n == 2 \]
4. \[\text{RETURN } \text{px}[0], \text{px}[1], \text{dist}(\text{px}[0], \text{px}[1]) \]
5.
6.
7.
8. \[\text{pl}, \text{ql}, \text{dl} = \text{ClosestPair(leftPx, leftPy)} \]
9.
10. \[\text{pr}, \text{qr}, \text{dr} = \text{ClosestPair(rightPx, rightPy)} \]

How do we create these arrays?
1. How do we create \textit{left_px}?
2. How do we create \textit{right_px}?
3. How do we create \textit{left_py}?
4. How do we create \textit{right_py}?
1. FUNCTION ClosestPair(px, py)
2. n = px.length
3. IF n == 2
4. RETURN px[0], px[1], dist(px[0], px[1])
5. RETURN

6. left_px = px[0..<n//2]
7. left_py = [p FOR p IN py IF p.x < px[n//2].x]
8. pl, ql, dl = ClosestPair(left_px, left_py)
9. right_px = px[n//2..<n]
10. right_py = [p FOR p IN py IF p.x ≥ px[n//2].x]
11. pr, qr, dr = ClosestPair(right_px, right_py)
Any problems with our current approach?
1. FUNCTION ClosestPair(px, py)
2. n = px.length
3. IF n == 2
4. RETURN px[0], px[1], dist(px[0], px[1])
5.
6. left_px = px[0..< n//2]
7. left_py = [p FOR p IN py IF p.x < px[n//2].x]
8. pl, ql, dl = ClosestPair(left_px, left_py)
9.
10. right_px = px[n//2..< n]
11. right_py = [p FOR p IN py IF p.x >= px[n//2].x]
12. pr, qr, dr = ClosestPair(right_px, right_py)
13.
14. d = min(dl, dr)
15. ps, qs, ds = ClosestSplitPair(px, py, d)
16.
17. RETURN Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)

What time complexity does this process need such that the overall algorithm runs in O(n \log n)?

Hint: think about Merge Sort.
Exercise Question 1

Running time needed for ClosestSplitPair?
Merge Sort and It’s Recurrence Equation
FUNCTION RecursiveFunction(some_input)
 IF base_case:
 # Usually O(1)
 RETURN base_case_work(some_input)

 # Two recursive calls, each with half the data
 one = RecursiveFunction(some_input.first_half)
 two = RecursiveFunction(some_input.second_half)

 # Combine results from recursive calls (usually O(n))
 one_and_two = Combine(one, two)

 RETURN one_and_two
1. **FUNCTION** ClosestPair(px, py)
2. \[n = px.length \]
3. **IF** \[n == 2 \]
4. **RETURN** px[0], px[1], dist(px[0], px[1])
5.
6. left_px = px[0 ..< n//2]
7. left_py = [p FOR p IN py IF p.x < px[n//2].x]
8. pl, ql, dl = ClosestPair(left_px, left_py)
9.
10. right_px = px[n//2 ..< n]
11. right_py = [p FOR p IN py IF p.x ≥ px[n//2].x]
12. pr, qr, dr = ClosestPair(right_px, right_py)
13.
14. d = min(dl, dr)
15. ps, qs, ds = ClosestSplitPair(px, py, d)
16.
17. **RETURN** Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)
Key Idea

• In ClosestSplitPair we only need to check for pairs that are closer than those found in the recursive calls to ClosestPair.

• This is easier (faster) than trying to find the closest split pair without any extra information!

\[d = \min[d(p_1, q_1), d(p_r, q_r)] \]
FUNCTION ClosestSplitPair(px, py, d)
 n = px.length
 x_median = px[n//2].x
 middle_py = [p FOR p IN py IF x_median - d < p.x < x_median + d]
 closest_d = INFINITY, closest_p = closest_q = NONE
 FOR i IN [0 ..< middle_py.length - 1]
 FOR j IN [1 ..= min(7, middle_py.length - i)]
 p = middle_py[i], q = middle_py[i + j]
 IF dist(p, q) < closest_d
 closest_d = dist(p, q)
 closest_p = p, closest_q = q
 RETURN closest_p, closest_q, closest_d

At most 6 points vertically “between” the two closest points.
Exercise Question 2

Running Time of Nested For-Loops
Loop Unrolling

FOR j IN [1 ..= min(7, middle_py.length - i)]
 p = middle_py[i], q = middle_py[i + j]
 IF dist(p, q) < closest_d
 closest_d = dist(p, q)
 closest_p = p, closest_q = q

IF dist(middle_py[i], middle_py[i + 1]) < closest_d
 closest_d = dist(middle_py[i], middle_py[i + 1])
 closest_p = middle_py[i]
 closest_q = middle_py[i + 1]

IF dist(middle_py[i], middle_py[i + 2]) < closest_d
 closest_d = dist(middle_py[i], middle_py[i + 2])
 closest_p = middle_py[i]
 closest_q = middle_py[i + 2]
FUNCTION ClosestSplitPair(px, py, d)
 n = px.length
 x_median = px[n//2].x
 middle_py = [p FOR p IN py
 IF x_median - d < p.x < x_median + d]
 closest_d = INFINITY, closest_p = closest_q = NONE
 FOR i IN [0 ..< middle_py.length - 1]
 FOR j IN [1 ..= min(7, middle_py.length - i)]
 p = middle_py[i], q = middle_py[i + j]
 IF dist(p, q) < closest_d
 closest_d = dist(p, q)
 closest_p = p, closest_q = q
 RETURN closest_p, closest_q, closest_d
Theorem: \texttt{ClosestPair} find the closest pair of points

Let \(p \in \text{left} \), \(q \in \text{right} \) be a split pair with \(d(p, q) < d \). Then

A. \(p \) and \(q \in \text{middle}_py \), and
B. \(p \) and \(q \) are at most 7 positions apart in \text{middle}_py

If the claim is true:

Corollary 1: If the closest pair of \(P \) is in a split pair, then our \texttt{ClosestSplitPair} procedure finds it.

Corollary 2: \texttt{ClosestPair} is correct and runs in \(O(n \lg n) \) same recursion tree as merge sort
Proof—Part A

Let \(p \in \text{left}, \ q \in \text{right} \) be a split pair with \(d(p, q) < d \). Then

A. \(p \) and \(q \) \(\in \) middle_py, and

If \(p = (x_1,y_1) \in \text{left AND} \ q = (x_2,y_2) \in \text{right AND} \ d(p,q) < d \) Then

\[
\begin{align*}
\text{x_median} - d &< x_1 \leq \text{x_median} \quad \text{and} \\
\text{x_median} &\leq x_2 < \text{x_median} + d
\end{align*}
\]

Otherwise, \(p \) and \(q \) would not be the closest pair with \(d(p, q) < d \).
Proof—Part A

Let \(p \in \text{left}, \ q \in \text{right} \) be a split pair with \(d(p, q) < d \) Then

A. \(p \) and \(q \in \text{middle}_py \), and

If \(p = (x_1,y_1) \in \text{left AND} q = (x_2,y_2) \in \text{right AND} d(p,q) < d \) Then

\[
\begin{align*}
 x_{\text{median}} - d &< x_1 \leq x_{\text{median}} \quad \text{and} \\
 x_{\text{median}} &\leq x_2 < x_{\text{median}} + d
\end{align*}
\]

Otherwise, \(p \) and \(q \) would not be the closest pair with \(d(p, q) < d \)
Claim

Let \(p \in \text{left}, \ q \in \text{right} \) be a split pair with \(d(p, q) < d \)
Then

A. \(p \) and \(q \in \text{middle}_\text{py} \), and

B. \(p \) and \(q \) are at most 7 positions apart in \(\text{middle}_\text{py} \)

If the claim is true:

Corollary 1: If the closest pair of \(P \) is in a split pair, then our \texttt{ClosestSplitPair} procedure finds it.

Corollary 2: \texttt{ClosestPair} is correct and runs in \(O(n \lg n) \) same recursion tree as merge sort
middle_py

pl

d1

ql

p

d

q1

pr

qr

dr

x_median

49
X-value of middle point
X-value of middle point
X-value of middle point
X-value of middle point

\[p \]

\[d \]

\[d \]
Proof—Part B

p and q are at most 7 positions apart in middle_py
Proof—Part B

p and q are at most 7 positions apart in middle_py

How many other points can possibly be in this area?
Proof—Part B

p and q are at most 7 positions apart in middle_py

Lemma 1: All points of middle_py with a y-coordinate between those of p and q lie within those 8 boxes.

Proof:
1. First, recall that the y-coordinate of p, q differs by less than d.
2. Second, by definition of middle_py, all have an x-coordinate between x_median +/- d.
Proof—Part B

p and q are at most 7 positions apart in middle_py

Lemma 1: All points of middle_py with a y-coordinate between those of p and q lie within those 8 boxes.

Lemma 2: At most one point of P can be in each box.

Proof: By contradiction. Suppose points a and b lie in the same box. Then

1. a and b are either both in L or both in R
2. $d(a, b) \leq d/2 \cdot \sqrt{2} < d$

This is a contradiction! How did we define d?
Max distance within box is $d/\sqrt{2}$
Claim

Let \(p \in \textit{left} \), \(q \in \textit{right} \) be a split pair with \(d(p, q) < d \)

Then

A. \(p \) and \(q \in \textit{middle_py} \), and
B. \(p \) and \(q \) are at most 7 positions apart in \textit{middle_py}

If the claim is true:

Corollary 1: If the closest pair of \(P \) is in a split pair, then \texttt{ClosestSplitPair} procedure finds it.

Corollary 2: \texttt{ClosestPair} is correct and runs in \(O(n \log n) \) same recursion tree as merge sort
Closest Pair

1. Copy P and sort one copy by x and the other copy by y in $O(n \lg n)$
2. Divide P into a left and right in $O(n)$
3. Conquer by recursively searching left and right
4. Look for the closest pair in middle_py in $O(n)$
 - Must filter by x
 - And scan through middle_py by looking at adjacent points
Closest Split Pair
Closest on Left

Closest is Split

Closest on Right
Closest on Left
Closest on Left
Closest on Left

Closest is Split

Closest on Right
Closest is Split
Closest is Split
FUNCTION ClosestPair(px, py)
 n = px.length
 IF n == 2
 RETURN px[0], px[1], dist(px[0], px[1])
 O(n)
 left_px = px[0 ..< n//2]
 left_py = [p FOR p IN py IF p.x < px[n//2].x]
 pl, ql, dl = ClosestPair(left_px, left_py)
 O(n)
 right_px = px[n//2 ..< n]
 right_py = [p FOR p IN py IF p.x ≥ px[n//2].x]
 pr, qr, dr = ClosestPair(right_px, right_py)
 O(1)
 d = min(dl, dr)
 ps, qs, ds = ClosestSplitPair(px, py, d)
 O(1)
 RETURN Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)

T(n) = 2 T(n/2) + O(n) = O(n lg n)
FUNCTION MergeSort(array)

n = array.length

IF n == 1

RETURN array

left_sorted = MergeSort(array[0..<n//2])
right_sorted = MergeSort(array[n//2..<n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

T(n) = 2 T(n/2) + O(n)

= O(n lg n)
FUNCTION RecursiveFunction(some_input)

O(1) IF base_case:
 # Usually O(1)
 RETURN base_case_work(some_input)

Two recursive calls, each with half the data
T(n/2) one = RecursiveFunction(some_input.first_half)
T(n/2) two = RecursiveFunction(some_input.second_half)

Combine results from recursive calls (usually O(n))
O(n) one_and_two = Combine(one, two)

O(1) RETURN one_and_two

\[T(n) = 2 \cdot T(n/2) + O(n) = O(n \lg n) \]