Closest Pair Algorithm

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives
• Learn more about Divide and Conquer paradigm
• Learn about the closest-pair problem and its $O(n \lg n)$ algorithm
 • Gain experience analyzing the run time of algorithms
 • Gain experience proving the correctness of algorithms

Exercise
• Closest Pair
Extra Resources

• Algorithms Illuminated: Part 1: Chapter 3
Closest Pair Problem

• **Input**: P, a set of n points that lie in a (two-dimensional) plane

• **Output**: a pair of points (p, q) that are the “closest”
 • Distance is measured using Euclidean distance:

 $$d(p, q) = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}$$

• **Assumptions**: None
Closest Pair Problem

• What is the brute force method for this search?
• What is the asymptotic running time of the brute force method?

Can we do better than $O(n^2)$?
One-dimensional closest pair

How would you find the closest two points?
- Sort by position: $O(n \log n)$
- Return the closest two using a linear scan: $O(n)$
- Total time: $O(n \log n) + O(n) = O(n \log n)$

Any problems using this approach for the two-dimensional case?
- Sorting does not generalize to higher dimensions!
- How do you sort the points?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?

3. Which two are closest?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?

3. Which two are closest?
Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
 1. Sort by x-coordinate
 2. Sort other by y-coordinate

Now we know we can’t do better than $O(n \lg n)$
P : \[p_0(1,10), \ p_1(2,8), \ p_2(7,3), \ p_3(5,7), \ p_4(8,4), \ p_5(3,5), \ p_6(10,9), \ p_7(9,1)\]

Sorted by x coordinate

Px : \[p_0(1,10), \ p_1(2,8), \ p_5(3,5), \ p_3(5,7), \ p_2(7,3), \ p_4(8,4), \ p_7(9,1), \ p_6(10,9)\]

Sorted by y coordinate

Py : \[p_7(9,1), \ p_2(7,3), \ p_4(8,4), \ p_5(3,5), \ p_3(5,7), \ p_1(2,8), \ p_6(10,9), \ p_0(1,10)\]
Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
 1. Sort by x-coordinate
 2. Sort other by y-coordinate

 $O(n \lg n)$

 • Can we still end up with a $O(n \lg n)$ algorithm for finding the closest pair?
 • Does the closeness of two points on one axis matter?
1. **FUNCTION** \texttt{FindClosestPair}(points)
2. \texttt{points_x} = \texttt{copy_and_sort_by_x}(points)
3. \texttt{points_y} = \texttt{copy_and_sort_by_y}(points)
4. **RETURN** \texttt{ClosestPair}(points_x, points_y)
Closet Pair—Two-Dimensions

1. Create a copy of the points (we now have two separate copies of P)
 1. Sort by x-coordinate
 2. Sort other by y-coordinate

 • Can we still end up with a $O(n \lg n)$ algorithm for finding the closest pair?
 • Does the closeness of two points on one axis matter?

2. Apply the Divide-and-Conquer method
Divide-and-Conquer

1. **DIVIDE** into smaller subproblems
2. **CONQUER** the subproblems via recursive calls
3. **COMBINE** solutions from the subproblems

• How would you divide the problems?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?

3. Which two are closest?

4. How would you divide the search space?
1. Which two are closest on the y-axis?

2. Which two are closest on the x-axis?

3. Which two are closest?

4. How would you divide the search space?

This is the **median** x-value
This is **not** the **average** x-value
1. **FUNCTION** ClosestPair(px, py)
2. \[n = px.length \]
3. # What is the base case?
4. IF \[n == 2 \]
5. RETURN px[0], px[1], dist(px[0], px[1])
6. 7. 8.
9. # What are the recursive cases?
10. \[pl, ql, dl = ClosestPair(left_px, left_py) \]
14. \[pr, qr, dr = ClosestPair(right_px, right_py) \]

1. **FUNCTION** FindClosestPair(points)
2. \[points_x = copy_and_sort_by_x(points) \]
3. \[points_y = copy_and_sort_by_y(points) \]
4. RETURN ClosestPair(points_x, points_y)
1. How do we create `left_px`?
2. How do we create `right_px`?
3. How do we create `left_py`?
4. How do we create `right_py`?
1. **FUNCTION** ClosestPair(px, py)
2. \hspace{1em} n = px.length
3. \hspace{1em} **IF** n == 2
4. \hspace{2em} **RETURN** px[0], px[1], dist(px[0], px[1])
5. \hspace{1em} left_px = px[0 ..< n//2]
6. \hspace{1em} left_py = [p FOR p IN py IF p.x < px[n//2].x]
7. \hspace{1em} pl, ql, dl = ClosestPair(left_px, left_py)
8. \hspace{1em} right_px = px[n//2 ..< n]
9. \hspace{1em} right_py = [p FOR p IN py IF p.x ≥ px[n//2].x]
10. \hspace{1em} pr, qr, dr = ClosestPair(right_px, right_py)

What is the running time of these operations?

Median x value
Any problems with our current approach?
1. **FUNCTION** ClosestPair(px, py)
2. \[n = \text{px}.\text{length} \]
3. **IF** \(n == 2 \)
4. **RETURN** px\[0\], px\[1\], dist(px\[0\], px\[1\])
5. \[
6. \text{left}_\text{px} = \text{px}[0 ..< \text{n}/2] \\
7. \text{left}_\text{py} = [p \text{ FOR } p \text{ IN } \text{py} \text{ IF } p.x < \text{px}[\text{n}/2].x] \\
8. \text{pl}, \text{ql}, \text{dl} = \text{ClosestPair}(\text{left}_\text{px}, \text{left}_\text{py}) \\
9. \]
10. \[
11. \text{right}_\text{px} = \text{px}[\text{n}/2 ..< \text{n}] \\
12. \text{right}_\text{py} = [p \text{ FOR } p \text{ IN } \text{py} \text{ IF } p.x \geq \text{px}[\text{n}/2].x] \\
13. \text{pr}, \text{qr}, \text{dr} = \text{ClosestPair}(\text{right}_\text{px}, \text{right}_\text{py}) \\
14. \]
15. \[d = \text{min}(\text{dl}, \text{dr}) \]
16. \[\text{ps}, \text{qs}, \text{ds} = \text{ClosestSplitPair}(\text{px}, \text{py}, d) \]
17. **RETURN** Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)
Exercise Question 1

1. What must be the running time of ClosestSplitPair if the ClosestPair algorithm is to have a running time of $O(n \lg n)$?

```
FUNCTION ClosestPair(px, py)
    n = px.length
    IF n == 2
        RETURN px[0], px[1], dist(px[0], px[1])
    left_px = px[0..< n//2]
    left_py = [p FOR p IN py IF p.x < px[n//2].x]
    pl, ql, dl = ClosestPair(left_px, left_py)
    right_px = px[n//2..< n]
    right_py = [p FOR p IN py IF p.x >= px[n//2].x]
    pr, qr, dr = ClosestPair(right_px, right_py)
    d = min(dl, dr)
    ps, qs, ds = ClosestSplitPair(px, py, d)
    RETURN Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)
```
Merge Sort and It’s Recurrence
FUNCTION RecursiveFunction(some_input)
 IF base_case:
 # Usually O(1)
 RETURN base_case_work(some_input)

 # Two recursive calls, each with half the data
 one = RecursiveFunction(some_input.first_half)
 two = RecursiveFunction(some_input.second_half)

 # Combine results from recursive calls (usually O(n))
 one_and_two = Combine(one, two)

 RETURN one_and_two
1. **FUNCTION** ClosestPair(px, py)

2. n = px.length

3. **IF** n == 2

4. **RETURN** px[0], px[1], dist(px[0], px[1])

5.

6. left_px = px[0..<n//2]

7. left_py = [p **FOR** p **IN** py **IF** p.x < px[n//2].x]

8. pl, ql, dl = ClosestPair(left_px, left_py)

9.

10. right_px = px[n//2..<n]

11. right_py = [p **FOR** p **IN** py **IF** p.x ≥ px[n//2].x]

12. pr, qr, dr = ClosestPair(right_px, right_py)

13.

14. d = min(dl, dr)

15. ps, qs, ds = ClosestSplitPair(px, py, d)

16.

17. **RETURN** Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)

How do we find the closest pair that splits the two sides?
Key Idea

• In \texttt{ClosestSplitPair} we only need to check for pairs that are closer than those found in the recursive calls to \texttt{ClosestPair}.

• This is easier (\texttt{faster}) than trying to find the closest split pair without any extra information!

\[d = \min[d(p_1, q_1), d(p_r, q_r)] \]
FUNCTION ClosestSplitPair(px, py, d)
 n = px.length
 x_median = px[n//2].x
 middle_py = [p FOR p IN py IF x_median - d < p.x < x_median + d]

 closest_d = INFINITY, closest_p = closest_q = NONE
 FOR i IN [0 ..< middle_py.length - 1]
 FOR j IN [1 ..= min(7, middle_py.length - i)]
 p = middle_py[i], q = middle_py[i + j]
 IF dist(p, q) < closest_d
 closest_d = dist(p, q)
 closest_p = p, closest_q = q

 RETURN closest_p, closest_q, closest_d

At most 6 points vertically “between” the two closest points.
Exercise Question 2

2. What is the running time of the nested for-loop (looping over j)?

```
FUNCTION ClosestSplitPair(px, py, d)
    n = px.length
    x_median = px[n//2].x
    middle_py = [p FOR p IN py IF x_median - d < p.x < x_median + d]
    closest_d = INFINITY, closest_p = closest_q = NONE
    FOR i IN [0 ..< middle_py.length - 1]
        FOR j IN [1 ..= min(7, middle_py.length - i)]
            p = middle_py[i], q = middle_py[i + j]
            IF dist(p, q) < closest_d
                closest_d = dist(p, q)
                closest_p = p, closest_q = q
    RETURN closest_p, closest_q, closest_d
```
Loop Unrolling

FOR j IN [1 ..= min(7, middle_py.length - i)]
 p = middle_py[i], q = middle_py[i + j]
 IF dist(p, q) < closest_d
 closest_d = dist(p, q)
 closest_p = p, closest_q = q

IF dist(middle_py[i], middle_py[i + 1]) < closest_d
 closest_d = dist(middle_py[i], middle_py[i + 1])
 closest_p = middle_py[i]
 closest_q = middle_py[i + 1]

IF dist(middle_py[i], middle_py[i + 2]) < closest_d
 closest_d = dist(middle_py[i], middle_py[i + 2])
 closest_p = middle_py[i]
 closest_q = middle_py[i + 2]
FUNCTION ClosestSplitPair(px, py, d)
 n = px.length
 x_median = px[n//2].x
 middle_py = [p FOR p IN py
 IF x_median - d < p.x < x_median + d]

 closest_d = INFINITY, closest_p = closest_q = NONE
 FOR i IN [0 ..< middle_py.length - 1]
 FOR j IN [1 ..= min(7, middle_py.length - i)]
 p = middle_py[i], q = middle_py[i + j]
 IF dist(p, q) < closest_d
 closest_d = dist(p, q)
 closest_p = p, closest_q = q

 RETURN closest_p, closest_q, closest_d
Theorem for correctness of ClosestPair

Theorem:

Provided a set of n points called P, the ClosestPair algorithm finds the closest pair of points according to their pairwise Euclidean distances.
ClosestPair finds the closest pair

Let \(p \in \text{left} \), \(q \in \text{right} \) be a split pair with \(d(p, q) < d \)

Then

A. \(p \) and \(q \in \text{middle}_\text{py} \), and

B. \(p \) and \(q \) are at most 7 positions apart in \(\text{middle}_\text{py} \)

If the claim is true:

Corollary 1: If the closest pair of \(P \) is in a split pair, then our \(\text{ClosestSplitPair} \) procedure finds it.

Corollary 2: \(\text{ClosestPair} \) is correct and runs in \(O(n \log n) \) since it has the same recursion tree as merge sort.
Proof—Part A

Let \(p \in \text{left}, \ q \in \text{right} \) be a split pair with \(d(p, q) < d \)

Then

\[
\text{A. } p \text{ and } q \in \text{middle}_py, \text{ and}
\]

If \(p = (x_1,y_1) \in \text{left AND } q = (x_2,y_2) \in \text{right AND } d(p,q) < d \)

Then

\[
\begin{align*}
x_{\text{median}} - d &< x_1 \leq x_{\text{median}} \quad \text{and} \\
x_{\text{median}} &\leq x_2 < x_{\text{median}} + d
\end{align*}
\]

Otherwise, \(p \) and \(q \) would not be the closest pair with \(d(p, q) < d \)
Proof—Part A

Let \(p \in \text{left}, \ q \in \text{right} \) be a split pair with \(d(p, q) < d \)

Then

A. \(p \) and \(q \in \text{middle}_\text{py}, \) and

If \(p = (x_1,y_1) \in \text{left AND} q = (x_2,y_2) \in \text{right AND} d(p,q) < d \)

Then

\[
\begin{align*}
x_\text{median} - d &< x_1 \leq x_\text{median} & \text{and} \\
x_\text{median} &\leq x_2 < x_\text{median} + d
\end{align*}
\]

Otherwise, \(p \) and \(q \) would not be the closest pair with \(d(p, q) < d \)
ClosestPair finds the closest pair

Let \(p \in \text{left} \), \(q \in \text{right} \) be a split pair with \(d(p, q) < d \)

Then

A. \(p \) and \(q \in \text{middlePy} \), and

B. \(p \) and \(q \) are at most 7 positions apart in \text{middlePy}

If the claim is true:

Corollary 1: If the closest pair of \(P \) is in a split pair, then our ClosestSplitPair procedure finds it.

Corollary 2: ClosestPair is correct and runs in \(O(n \lg n) \) since it has the same recursion tree as merge sort
middle_py

pl

dl

q1

p

pr

qr

ql

dr

x_median

d
d
X-value of middle point

\[\text{d} \quad \text{d} \quad \text{d} \]

p
Proof—Part B

p and q are at most 7 positions apart in middle_py
Proof—Part B

p and q are at most 7 positions apart in \textit{middle_py}

How many other points can possibly be in this area?

\[\text{min}[y_1, y_2] \]
Proof—Part B

p and q are at most 7 positions apart in middle_py

Lemma 1: All points of middle_py with a y-coordinate between those of p and q lie within those 8 boxes.

Proof:
1. First, recall that the y-coordinate of p, q differs by less than d.
2. Second, by definition of middle_py, all have an x-coordinate between x_median += d.
Proof—Part B

p and q are at most 7 positions apart in middle_py

Lemma 1: All points of middle_py with a y-coordinate between those of p and q lie within those 8 boxes.

Lemma 2: At most one point of P can be in each box.

Proof: By contradiction. Suppose points a and b lie in the same box. Then

1. a and b are either both in L or both in R
2. $d(a, b) \leq d/2 \sqrt{2} < d$

This is a contradiction! How did we define d?
Max distance within box is $\frac{d}{\sqrt{2}}$

cannot be here
ClosestPair finds the closest pair

Let \(p \in \text{left}, \ q \in \text{right} \) be a split pair with \(d(p, q) < d \)

Then

A. \(p \) and \(q \) \(\in \) middle_py, and

B. \(p \) and \(q \) are at most 7 positions apart in middle_py

If the claim is true:

Corollary 1: If the closest pair of \(P \) is in a split pair, then our **ClosestSplitPair** procedure finds it.

Corollary 2: **ClosestPair** is correct and runs in \(O(n \lg n) \) since it has the same recursion tree as merge sort.
Closest Pair

1. Copy P and sort one copy by x and the other copy by y in $O(n \log n)$
2. Divide P into a left and right in $O(n)$
3. Conquer by recursively searching left and right
4. Look for the closest pair in middle$_py$ in $O(n)$
 - Must filter by x
 - And scan through middle$_py$ by looking at adjacent points
FUNCTION ClosestPair(px, py)

n = px.length

IF n == 2

RETURN px[0], px[1], dist(px[0], px[1])

left_px = px[0 ..< n//2]
left_py = [p FOR p IN py IF p.x < px[n//2].x]
pl, ql, dl = ClosestPair(left_px, left_py)

right_px = px[n//2 ..< n]
right_py = [p FOR p IN py IF p.x ≥ px[n//2].x]
pr, qr, dr = ClosestPair(right_px, right_py)

d = min(dl, dr)
ps, qs, ds = ClosestSplitPair(px, py, d)

RETURN Closest(pl, ql, dl, pr, qr, dr, ps, qs, ds)
FUNCTION MergeSort(array)

\[n = array.length \]

IF \(n == 1 \) RETURN array

left_sorted = MergeSort(array[0 ..< n//2])
right_sorted = MergeSort(array[n//2 ..< n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

\[T(n) = 2 \ T(n/2) + O(n) = O(n \ lg \ n) \]
FUNCTION RecursiveFunction(some_input)

IF base_case:
 # Usually O(1)
 RETURN base_case_work(some_input)

Two recursive calls, each with half the data
one = RecursiveFunction(some_input.first_half)
two = RecursiveFunction(some_input.second_half)

Combine results from recursive calls (usually O(n))
one_and_two = Combine(one, two)

RETURN one_and_two

T(n) = 2 \cdot T(n/2) + O(n)
 = O(n \log n)
Supplementary slides showing an example execution.
Closest Split Pair
Closest on Left

Closest is Split

Closest on Right
Closest on Left
Closest on Left
Closest is Split
Closest is Split