Merge Sort

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives

• Learn how the merge sort algorithm operates
• Become aware of the “Divide and Conquer” algorithmic paradigm by analyzing merge sort

Exercise

• Recursion tree
Extra Resources

• CLRS (Cormen Book): Chapter 4
• Algorithms Illuminated: Part 1: Chapter 1
Divide and Conquer

• This is an algorithm design paradigm
• Most divide and conquer algorithms are recursive in nature
• The basic idea is to break the problem into easier-to-solve subproblems

• What's easier to do:
 • Sort 0, 1, or 2 numbers, or
 • Sort 10 numbers
Merge Sort

• This is a “Divide and Conquer”-style algorithm

• Improves over insertion sort in the worst case

• Unlike insertion sort, the best/average/worst case running times of merge sort are all the same
FUNCTION MergeSort(array)
 n = array.length
 IF n == 1
 RETURN array

 left_sorted = MergeSort(array[0..<n//2])
 right_sorted = MergeSort(array[n//2..<n])

 array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted
FUNCTION MergeSort(array)
O(1) n = array.length
O(1) IF n == 1
O(1) RETURN array

O(?) left_sorted = MergeSort(array[0 ..< n//2])
O(?) right_sorted = MergeSort(array[n//2 ..< n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted
FUNCTION MergeSort(array)

n = array.length

IF n == 1
 RETURN array

left_sorted = MergeSort(array[0..<n//2])
right_sorted = MergeSort(array[n//2..<n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted
What is the running time of each line?

```
FUNCTION MergeSort(array)
    n = array.length
    IF n == 1
        RETURN array
    left_sorted = MergeSort(array[0..<n//2])
    right_sorted = MergeSort(array[n//2..<n])
    array_sorted = Merge(left_sorted, right_sorted)
    RETURN array_sorted
```
What is the running time of each line?

FUNCTION MergeSort(array)

n = array.length

IF n == 1
 RETURN array

left_sorted = MergeSort(array[0..<n//2])
right_sorted = MergeSort(array[n//2..<n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

T(n) = 2 T(n/2) + O(?) + 4 O(1)
= 2 T(n/2) + O(?)

O(1)
Recurrence Equation

\[T(n) = 2 \cdot T(n/2) + O(?) + 4 \cdot O(1) \]

\[= 2 \cdot T(n/2) + O(?) \]
Merge Sort

Divide

Recursion/Conquer (not shown)

Merge
Merge Sort

Write the Merge routine

Divide

Recursion/Conquer (not shown)

Merge

1 2 3 4 5 6 7 8
FUNCTION Merge(one, two)
 out[one.length + two.length] # Declare array
FUNCTION Merge(one, two)
 out[one.length + two.length]
 i = j = k = 0
 WHILE k < out.length
 IF one[i] < two[j]
 out[k] = one[i]
 i = i + 1
 ELSE
 out[k] = two[j]
 j = j + 1
 k = k + 1

What is the total running time?

Ignoring invalid indices

TTYN
FUNCTION Merge(one, two)
 out [one.length + two.length]
 i = j = k = 0
 WHILE k < out.length
 IF one[i] < two[j]
 out[k] = one[i]
 i = i + 1
 ELSE
 out[k] = two[j]
 j = j + 1
 k = k + 1
 Ignoring invalid indices

Total Running Time

4
3
2 (m + 1)
3 m
3 m
2 m
0
3 m
2 m
2 m
FUNCTION Merge(one, two)
 out[one.length + two.length]
 i = j = k = 0
 WHILE k < out.length
 IF one[i] < two[j]
 out[k] = one[i]
 i = i + 1
 ELSE
 out[k] = two[j]
 j = j + 1
 k = k + 1

Ignoring invalid indices

$T_{merge}(m) = 12m + 9$

Total Running Time

4
3
2 (m + 1)
3 m
3 m
2 m
0
3 m
2 m
2 m
Simplifying the running time

• We don’t need to be exactly correct with the running time of Merge
• We will eventually remove lower order terms anyway
• Let’s simplify the expression a bit:

\[T_{merge}(m) = 12m + 9 \]

\[T_{merge}(m) \leq 12m + 9m \]

\[T_{merge}(m) \leq 21m \]
Merging

We have an idea of the cost of an individual call to merge:

\[T(m) \leq 21m \]

What else do we need to know to calculate the total time of \textbf{MergeSort}?

1. How many times do we merge in total?
2. What is the size of each merge? (In other words: \textbf{What is } \textit{m}?)
FUNCTION MergeSort(array)

n = array.length

IF n == 1

RETURN array

left_sorted = MergeSort(array[0..<n//2])

right_sorted = MergeSort(array[n//2..<n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

What is the running time of each line?

T(n) = 2 T(n/2) + O(?) + 4 O(1)

= 2 T(n/2) + O(?)^23
What is the running time of each line?

```plaintext
FUNCTION MergeSort(array)

n = array.length

IF n == 1
    RETURN array

T(n/2) left_sorted = MergeSort(array[0..<n//2])
T(n/2) right_sorted = MergeSort(array[n//2..<n])

O(n) array_sorted = Merge(left_sorted, right_sorted)

O(1) RETURN array_sorted
```

T(n) = 2 T(n/2) + O(n) + 4 O(1)

= 2 T(n/2) + O(n)
How many times do we call **Merge**?

- **Level 0**: Entire input: size n
- **Level 1**: size n/2
- **Level 2**: size n/4
- **Level 3**: size n/8
- **Level ?**: size 1
How many times do we call **Merge**?

Level 0
Entire input: size n

Level 1
size $n/2$

Level 2
size $n/4$

Level 3
size $n/8$

Total Levels: $\log_2(n) + 1$
Exercise

How many sub-problems are there at level \(L \)? The top level is Level 0, the second level is Level 1, and the bottom level is Level \(\log_2(n) \)

Answer: \(2^L \)

How many elements are there for a given sub-problem found in level \(L \)?

Answer: \(n/2^L \)

How many computations are performed at a given level? The cost of a Merge was 21m.
Exercise

How many sub-problems are there at level L? The top level is Level 0, the second level is Level 1, and the bottom level is Level $\log_2(n)$.

Answer: 2^L

How many elements are there for a given sub-problem found in level L?

Answer: $n/2^L$

How many computations are performed at a given level? The cost of a Merge was 21m.

Answer: $2^L \times 21(n/2^L) \rightarrow 21n$

What is the total computational cost of merge sort?

Answer: $21n \times (\log_2(n) + 1)$
Exercise

How many sub-problems are there at level L? The top level is Level 0, the second level is Level 1, and the bottom level is Level $\log_2(n)$

Answer: 2^L

How many elements are there for a given sub-problem found in level L?

Answer: $n/2^L$

How many computations are performed at a given level? The cost of a Merge was 21m.

Answer: $2^L 21(n/2^L) \rightarrow 21n$

What is the total computational cost of merge sort?

Answer: $21n (\log_2(n) + 1)$
Merge Sort

Divide and Conquer
• constantly halving the problem size and then merging

Total running time of roughly $21n \log_2(n) + 21n$

Compared to insertion sort with an average total running time of $\frac{1}{2} n^2$
• For small values of n, insertion sort is better

Which algorithm is better?
What does this plot tell you?

Merge Sort
Verse
Insertion Sort
Worst-Case

$5n^2$

$21n(\log_2(n) + 1)$
Merge Sort

Worst-Case

Insertion Sort

Verse Sort

\[\text{Worst-case: } 2n \log_2(n) + 1 \]
Constants

\[100n \log_2(n) \]

\[0.01n^2 \]