Merge Sort

https://cs.pomona.edu/classes/cs140
Outline

Topics and Learning Objectives
• Learn how the merge sort algorithm operates
• Become aware of the “Divide and Conquer” algorithmic paradigm by analyzing merge sort

Exercises
• Recursion tree
Extra Resources

• Chapter 4: divide-and-conquer
Divide and Conquer

• This is an algorithm design paradigm
• Most divide and conquer algorithms are recursive in nature
• The basic idea is to break the problem into easier-to-solve subproblems

• What's easier to do:
 • Sort 0, 1, or 2 numbers, or
 • Sort 10 numbers
Merge Sort

• This is a “Divide and Conquer”-style algorithm

• Improves over insertion sort in the worst case

• Unlike insertion sort, the best/average/worst case running times of merge sort are all the same
Assume: \(n \) is a power of 2

FUNCTION MergeSort(array)

\[
\text{n} = \text{array}.\text{length}
\]

IF \(n \) == 1

RETURN array

\[
\text{left_sorted} = \text{MergeSort}(\text{array}[0 .. < n/2])
\]

\[
\text{right_sorted} = \text{MergeSort}(\text{array}[n//2 .. < n])
\]

\[
\text{array_sorted} = \text{Merge}(\text{left_sorted}, \text{right_sorted})
\]

RETURN array_sorted

What is the running time of each line?

TTYN
What is the running time of each line?

```plaintext
FUNCTION MergeSort(array)
  n = array.length
  IF n == 1
    RETURN array
  left_sorted = MergeSort(array[0..<n//2])
  right_sorted = MergeSort(array[n//2..<n])
  array_sorted = Merge(left_sorted, right_sorted)
  RETURN array_sorted
```
What is the running time of each line?

FUNCTION MergeSort(array)

n = array.length

IF n == 1

RETURN array

left_sorted = MergeSort(array[0..<n/2])

right_sorted = MergeSort(array[n/2..<n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted
What is the running time of each line?

FUNCTION MergeSort(array)

n = array.length

IF n == 1

RETURN array

left_sorted = MergeSort(array[0..<n//2])

right_sorted = MergeSort(array[n//2..<n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted
What is the running time of each line?

FUNCTION MergeSort(array)

n = array.length

IF n == 1

RETURN array

T(n/2) left_sorted = MergeSort(array[0..<n/2])

T(n/2) right_sorted = MergeSort(array[n//2..<n])

O(?) array_sorted = Merge(left_sorted, right_sorted)

O(1) RETURN array_sorted
Recurrence Equation

\[T(n) = 2 \cdot T(n/2) + O(?) + 4 \cdot O(1) \]

\[= 2 \cdot T(n/2) + O(?) \]
Merge Sort

[Diagram of Merge Sort process with steps: Divide, Recursion/Conquer (not shown), Merge]

1. Divide:
 - 5 4 1 8
 - 7 2 6 3

2. Recursion/Conquer (not shown):
 - 1 4 5 8
 - 2 3 6 7

3. Merge:
 - 1 2 3 4 5 6 7 8
$$P = 7$$

$$m = 4$$

$$m = 3$$
Merge Sort

Write the Merge routine

Divide

Recursion/Conquer (not shown)

Merge
FUNCTION Merge(one, two)
 out[one.length + two.length] # Declare array
FUNCTION Merge(one, two)
 out[one.length + two.length]
 i = j = k = 0
 WHILE k < out.length
 IF one[i] < two[j]
 out[k] = one[i]
 i = i + 1
 ELSE
 out[k] = two[j]
 j = j + 1
 k = k + 1
 What is the total running time?
FUNCTION Merge(one, two)

out[one.length + two.length]
i = j = k = 0

WHILE k < out.length

IF one[i] < two[j]

out[k] = one[i]
i = i + 1

ELSE

out[k] = two[j]

j = j + 1

k = k + 1

Total Running Time

4
3
2 (m + 1)
3 m
3 m
2 m
0
3 m
2 m
2 m

Ignoring invalid indicies
FUNCTION Merge(one, two)
 out[one.length + two.length]
 i = j = k = 0
 WHILE k < out.length
 IF one[i] < two[j]
 out[k] = one[i]
 i = i + 1
 ELSE
 out[k] = two[j]
 j = j + 1
 k = k + 1
 Total Running Time
 Total Running Time
 T_{merge}(m) = 12m + 9
Simplifying the running time

• We don’t need to be *exactly* correct with the running time of Merge
• We will eventually remove lower order terms anyway
• Let’s simplify the expression a bit:

\[T_{merge}(m) = 12m + 9 \]

\[T_{merge}(m) \leq 21m \]
Merging

We have an idea of the cost of an individual call to merge:

\[T(m) \leq 21m \]

What else do we need to know to calculate the total time of MergeSort?

1. How many times do we merge in total?
2. What is the size of each merge? (In other words: What is \(m \)?)
FUNCTION MergeSort(array)

n = array.length

IF n == 1

RETURN array

left_sorted = MergeSort(array[0 ..< n//2])

right_sorted = MergeSort(array[n//2 ..< n])

array_sorted = Merge(left_sorted, right_sorted)

RETURN array_sorted

What is the running time of each line?

$T(n) = 2 \cdot T(n/2) + O(?) + 4 \cdot O(1)$

$= 2 \cdot T(n/2) + O(?)$
What is the running time of each line?

FUNCTION MergeSort(array)

\[T(n) \]

\[n = \text{array.length} \]

\[\text{IF } n == 1 \]

\[\text{RETURN array} \]

\[T(n/2) \]

\[\text{left_sorted = MergeSort(array[0 ..< n//2])} \]

\[T(n/2) \]

\[\text{right_sorted = MergeSort(array[n//2 ..< n])} \]

\[O(n) \]

\[\text{array_sorted = Merge(left_sorted, right_sorted)} \]

\[O(1) \]

\[\text{RETURN array_sorted} \]

\[O(n) \]

\[O(n^2) \]

\[\text{Insertion Sort} \]
How many times do we call Merge?

Level 0

Level 1

Level 2

Level 3

Level ?

Entire input: size n

size $n/2$

size $n/4$

size $n/8$

size 1
How many times do we call **Merge**?

Level 0: Entire input: size n

Level 1: size $n/2$

Level 2: size $n/4$

Level 3: size $n/8$

Level $\log_2(n)$: size 1

Total Levels: $\log_2(n) + 1$
Exercise

How many sub-problems are there at level L? The top level is Level 0, the second level is Level 1, and the bottom level is Level $\log_2(n)$

Answer: 2^L

How many elements are there for a given sub-problem found in level L?

Answer: $n/2^L$

How many computations are performed at a given level? The cost of a Merge was 21m.
Exercise

How many sub-problems are there at level L? The top level is Level 0, the second level is Level 1, and the bottom level is Level $\log_2(n)$

Answer: 2^L

How many elements are there for a given sub-problem found in level L?

Answer: $n/2^L$

How many computations are performed at a given level? The cost of a Merge was 21m.

Answer: $2^L \times 21(n/2^L) = 21n$

What is the total computational cost of merge sort?

Answer: $21n \times (\log_2(n) + 1)$
Exercise

How many sub-problems are there at level L? The top level is Level 0, the second level is Level 1, and the bottom level is Level $\log_2(n)$

Answer: 2^L

How many elements are there for a given sub-problem found in level L?

Answer: $n/2^L$

How many computations are performed at a given level? The cost of a Merge was 21m.

Answer: $2^L \times 21(n/2^L) \Rightarrow 21n$

What is the total computational cost of merge sort?

Answer: $21n \ (\log_2(n) + 1)$
Merge Sort

Divide and Conquer
• constantly halving the problem size and then merging

Total running time of roughly $21n \log_2(n) + 21n$

Compared to insertion sort with an average **total running time** of $\frac{1}{2} n^2$
• For small values of n, insertion sort is better

Which algorithm is better?
Merge Sort
Verse
Insertion Sort
Worst-Case

What does this plot tell you?

\[5n^2 \]

\[21n(\log_2(n) + 1) \]
Merge Sort
Verse
Insertion
Sort
Worst-Case

\[2n \log_2 n + 1 \]

\[5n^2 \]

\[21n \log_2 n + 1 \]
Constants

\[0.01n^2 \]

\[100n \log_2(n) \]