Loop Invariants

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives
• Practice writing loop invariants

Exercise
• Loop Invariant
Extra Resources

• **Chapter 2** of *Introduction to Algorithms*, Third Edition

• https://www.win.tue.nl/~kbuchin/teaching/JBP030/notebooks/loop-invariants.html
Loop Invariant Proofs

- A procedural way to prove the correctness of some code with a loop
- Very similar to inductive proofs for recursive algorithms
FUNCTION SumArray(array)
 sum = 0
 i = 0
 WHILE i < array.length
 sum = sum + array[i]
 i = i + 1

How do we prove that this code sums all values in the given array?

Some useful syntax:

- array[start ..= end] is the subarray
 - Including array[start], array[end], and everything in between
 - Inclusive lower and upper bounds

- array[start ..< end] is the subarray
 - Including array[start], excluding array[end], and including everything in between
 - Inclusive lower bound, exclusive upper bound
Loop Invariants

A loop invariant is a predicate (a statement that is either true or false) with the following properties:

1. It is true upon entering the loop the first time.

 Initialization

2. If it is true upon starting an iteration of the loop, it remains true upon starting the next iteration.

 Maintenance

3. The loop terminates, and the loop invariant plus the reason that the loop terminates gives you the property that you want.

 Termination
Relation to Induction Proofs

Loop Invariant
- **Initialization**: true before entering first iteration
- **Maintenance**: true after executing any iteration
- **Termination**: true after the final iteration

Induction
- **Base case**: true when acting on the smallest input
- **Inductive hypothesis**: assume true for smaller inputs
- **Inductive step**: true after executing on current input
Relation to Induction Proofs

Loop Invariant
- **Initialization**: true before entering first iteration
- **Maintenance**: true after executing any iteration
- **Termination**: true after the final iteration

Induction
- **Base case**: true when acting on the smallest input
- **Inductive hypothesis**: assume true for smaller inputs
- **Inductive step**: true after executing on current input
How to perform a proof by loop invariant

1. State the loop invariant
 1. A statement that can be easily proven true or false
 2. The statement must reference the purpose of the loop
 3. The statement must reference variables that change each iteration

2. Show that the loop invariant is true before the loop starts

3. Show that the loop invariant holds when executing any iteration

4. Show that the loop invariant holds once the loop ends
Loop Invariant

At the start of the iteration with <reference the looping variable>,
the <reference to partial solution>
<something about why the partial solution is correct>.

At the start of the iteration with index j,
the subarray array[0 ..= j−1] consists of the elements originally
in array[0 ..= j−1]
rearranged into nondecreasing order.
Example

```java
FUNCTION SumArray(array)
    sum = 0
    i = 0
    WHILE i < array.length
        sum = sum + array[i]
        i = i + 1
```

1. **State the loop invariant**
 1. A statement that can be easily proven true or false
 2. The statement must reference the purpose of the loop
 3. The statement must reference variables that change each iteration

Exercise
Example

FUNCTION SumArray(array)
 sum = 0
 i = 0
 WHILE i < array.length
 sum = sum + array[i]
 i = i + 1

1. State the loop invariant
 1. A statement that can be easily proven true or false
 2. The statement must reference the purpose of the loop
 3. The statement must reference variables that change each iteration

What would be a good loop invariant for proving this procedure?
Example

FUNCTION SumArray(array)
 sum = 0
 i = 0
 WHILE i < array.length
 sum = sum + array[i]
 i = i + 1

At the start of the iteration with index i, the variable sum is the sum of all values in the subarray array[0..<i].

1. State the loop invariant
 1. A statement that can be easily proven true or false
 2. The statement must reference the purpose of the loop
 3. The statement must reference variables that change each iteration
Example

FUNCTION SumArray(array)

```
    sum = 0
    i = 0
    WHILE i < array.length
        sum = sum + array[i]
        i = i + 1
```

At the start of the iteration with index i, the variable sum is the sum of all values in the subarray $\text{array}[0 ..< i]$.

1. **Initialization**
2. **Maintenance**
3. **Termination**
Example

FUNCTION SumArray(array)
 sum = 0
 i = 0
 WHILE i < array.length
 sum = sum + array[i]
 i = i + 1

Initialization:
Upon entering the first iteration, $i = 0$. There are no numbers in the subarray $array[0 ..< i]$. The sum of no terms is the identity for addition (0).
Example

FUNCTION SumArray(array)
 sum = 0
 i = 0
 WHILE i < array.length
 sum = sum + array[i]
 i = i + 1

Maintenance:
Upon entering an iteration with index i, assume that sum is equal to the sum of all values in the subarray $array[0 ..< i]$. The current iteration adds $array[i]$ to sum and then increments i, so that the loop invariant holds upon entering the next iteration.
Example

FUNCTION SumArray(array)

```plaintext
sum = 0
i = 0
WHILE i < array.length
    sum = sum + array[i]
    i = i + 1
```

Termination:
The loop terminates with $i = n$. According to the loop invariant, sum is equal to the sum of all values in the subarray $\text{array}[0 ..< i]$: $\text{sum} = \sum_{i=0}^{i-1} \text{array}[i] = \sum_{i=0}^{n-1} \text{array}[i]$

which is the sum of all values in the array.
A more complex example: Dijkstra’s Algorithm

```
DIJKSTRA (G, w, s)
    S = null
    Q = G.V
    while Q is not null
        u = EXTRACT-MIN(Q)
        S = S union {u}
        for each vertex v adjacent to u
            RELAX(u, v, w)
```

Loop Invariant:
At the start of each iteration of the while loop, v.d = delta(s, v) for each vertex v in S.
Dijkstra’s Algorithm

\[\text{DIJKSTRA} (G, w, s) \]
\[S = \text{null} \]
\[Q = G.V \]
\[\textbf{while} \ Q \text{ is not null} \]
\[\quad u = \text{EXTRACT-MIN}(Q) \]
\[\quad S = S \cup \{u\} \]
\[\quad \textbf{for each vertex } v \text{ adjacent to } u \]
\[\quad \text{RELAX}(u, v, w) \]

Initialization:
Initially, \(S = \text{null} \) and so the invariant is trivially true.

Loop Invariant:
At the start of each iteration of the while loop, \(v.d = \text{delta}(s, v) \) for each vertex \(v \) in \(S \).
Dijkstra's Algorithm

Dijkstra\((G, w, s)\)

\(S = \text{null}\)

\(Q = G.V\)

\(\text{while } Q \text{ is not null}\)

\(u = \text{EXTRACT-MIN}(Q)\)

\(S = S \cup \{u\}\)

\(\text{for each vertex } v \text{ adjacent to } u\)

\(\text{RELAX}(u, v, w)\)
Dijkstra’s Algorithm

Dijkstra \((G, w, s)\)

\[
\text{S = null} \\
\text{Q = G.V} \\
\text{while Q is not null} \\
\quad \text{u = EXTRACT-MIN(Q)} \\
\quad \text{S = S union \{u\}} \\
\quad \text{for each vertex v adjacent to u} \\
\quad \text{RELAX(u, v, w)}
\]

Loop Invariant:
At the start of each iteration of the while loop, \(v.d = \text{delta}(s, v)\) for each vertex \(v\) in \(S\).

Termination:
At termination, \(Q = \text{null}\) which, along with our earlier invariant that \(Q = V - S\), implies that \(S = V\). Thus, \(u.d = \text{delta}(s, u)\) for all vertices in \(G.V\).