Asymptotic Notation (Big O)

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives
• Discuss total running time
• Discuss asymptotic running time
• Learn about asymptotic notation

Exercise
• Running time
Extra Resources

• Chapter 3: asymptotic notation
Comparing Algorithms and Data Structures

We like to compare algorithms and data structures
 • Speed
 • Memory usage

We don’t always need to care about little details

We ignore some details anyway
 • Data locality
 • Differences among operations
Constants

\[0.01n^2 \]

\[100n \log_2(n) \]
Big-O Example Code (ODS 1.3.3)

function_one has a total running time of $2n \log n + 2n - 250$

a = function_one(input_one)

function_two has a total running time of $3n \log n + 6n + 48$

b = function_two(input_two)

• The total running time of the code above is:

$$2n \log n + 2n - 250 + 1 + 3n \log n + 6n + 48 + 1$$

$$5n \log n + 8n - 200$$
Big-O Example Math (ODS 1.3.3)

\[5n \log n + 8n - 200\]

• We don’t care about most of these details
• We want to be able to quickly glance at the running time of an algorithm and know how it compares to others
• So we say the following

\[5n \log n + 8n - 200 = O(n \log n)\]
Big-O (Asymptotic Running Time)

\[T(n) = O(f(n)) \]

If and only if (iff) we can find values for \(c, n_0 > 0 \), such that

\[T(n) \leq c \cdot f(n), \text{ where } n \geq n_0 \]

Note: \(c, n_0 \) cannot depend on \(n \)
Searching an array for a given number?

Write an algorithm (in pseudocode):

```
Function FindNum (array, num)

For val In array
  If val == num
    Return True
  End If
End For

Return False
```

What is the total running time?

Time Complexity: \(\Theta(n) \)

Searching an array for a given number?

What is the asymptotic running time? \(T(n) = 2n + 1 \)

\[T(n) = O(___) \]
\[T(n) = O(n) \]

\[T(n) \leq c \cdot n \quad \forall \ n \geq n_0 \]

\[2n + 1 \leq c \cdot n \quad \forall \ n \geq 1 \]

\[c = 2 \]

\[n_0 = 1 \]
Search two separate arrays (sequentially) for a given number?

Write an algorithm (in pseudocode):

```
Function FindNumInZ(array1, array2, num):
    return FindNum(array1, num) OR FindNum(array2, num)

n^2
n = max(array1.length, or array2.length)
2n + O + 2n + O + O + T
```

What is the total running time?
Search two separate arrays (sequentially) for a given number?

What is the asymptotic running time? \(T(n) = 4n + 3 \)

\[
T(n) = \Theta(n)
\]

\[
4n + 3 \leq cn \quad \forall n \geq n_0
\]

\[
4n + 3 \leq 4n + 3n \leq cn \quad \forall n \geq n_0
\]

\[
3 \leq 3n \Rightarrow n \geq 1
\]

\[
c = 7, \quad n_0 = 1
\]
Searching two arrays for any common number?

Write an algorithm (in pseudocode):

`Function Find Common (array1, array2)`

- For `val1` in `array1`
 - If `Find(val1, array2)`
 - Return True
 - Return False

`T(n) = n + n(2n+1) + 1`
Searching two arrays for any common number?

What is the asymptotic running time? \(T(n) = 2n^2 + 2n + 1 \)

\[
T(n) \neq O(n)
\]

\[
\frac{2n^2 + 2n + 1}{n} \leq \frac{cm}{n}
\]

\[
2n^2 + 2n + 1 \leq \frac{1}{10^3} \quad \text{for} \quad n \geq n_0
\]

\[
2n + 2 + \frac{1}{n} \leq c
\]

\[
1,000,000 = n_0
\]

\[
= 200
\]
Searching two arrays for any common number?

What is the asymptotic running time? \(T(n) = 2n^2 + 2n + 1 \)

\[
T(n) = O(n^2)
\]

\[
2n^2 + 2n + 1 \leq Cn^2
\]

\[
2n^2 + 2n + 1 \leq \frac{2n^2 + 2n^2 + 1}{n^2} \leq \frac{2n^2 + 2n^2 + 1n^2}{n^2} \leq \frac{Cn^2}{n^2}
\]

\[
\forall n \geq n_0
\]

\[
2n^2 + 2n + 1 \leq 2n^2 + 2n^2 + 1n^2 \leq Cn^2
\]

\[
\forall n \geq n_0
\]
Searching a single array for duplicate numbers?

Write an algorithm (in pseudocode):

```
Function FindDuplicate(array)
    array = MergeSort(array)  \(\leq 2\ln \ln n + 2\ln n\)
    For i In [1..<array.length]  \(\leq \ln n\)
        If array[i-1] == array[i]  \(\leq 3n\)
            Return True
    Return False + 1  \(\leq 2\ln \ln n + 2\ln n + 4n+1\)
```
Searching a single array for duplicate numbers?

What is the **asymptotic running time**? \(T(n) = 21n \lg n + 25n + 1 \)

\[
T(n) = O(n \lg n)
\]

\[
\frac{21n \lg n + 25n + 1}{n \lg n} \leq \frac{Cn \lg n}{n \lg n} \quad \forall \ n \geq n_0
\]

\[
\Rightarrow 21 + \frac{25}{\lg n} + \frac{1}{n \lg n} \leq C \quad \forall \ n \geq n_0
\]

\[
\frac{25}{\lg 2} \leq C \quad \Rightarrow \frac{25}{\lg 2} \cdot \frac{26}{26} \leq \frac{25}{26} \cdot \frac{26}{\lg 2} \Rightarrow \frac{1}{\lg 2} \Rightarrow \gamma < 1
\]
Searching a single array for duplicate numbers?

What is the asymptotic running time? \(T(n) = 21n \log n + 25n + 1 \)

\[
21 + 1 + \frac{1}{n \log n} \leq c \quad \forall \ n \geq n_0
\]

\[
\frac{1}{n \log n} \leq 1 \quad \forall \ n \geq 2
\]

\[
21 + 1 + 1 \leq c \quad \forall \ n \geq 2^{2s}
\]

\[
c = 22, \quad n_0 = 2^{2s}
\]
Exercise

Big-O Examples

- **Claim:** $2^{n+10} = O(2^n)$

 \[
 2^{n+10} \leq c \cdot 2^n \quad \text{for } n \geq n_0
 \]

 \[
 2^n \cdot 2^{10} \leq c \cdot 2^n \quad \text{for } n \geq n_0
 \]

 \[
 c = 2^{10}, \quad n_0 = 1
 \]
Big-O Examples

• Claim: $2^{10n} \neq O(2^n)$

$2^{10n} \leq c \cdot 2^n \quad \forall \ n \geq n_0$

$2^{10n-n} \leq c$

$2^{a \cdot n} \leq c \quad \forall \ n \geq n_0$

Note: c, n_0 cannot depend on n
Big-O Examples

- Claim: for every $k \geq 1$, n^k is **not** $O(n^{k-1})$

$\forall k \geq 1 \quad n^k \neq O(n^{k-1})$

$n^k \leq C(n^{k-1}) \quad \nexists \quad n \geq n_0$

$n^k \leq Cn^{k-1} \quad \nexists \quad n \geq n_0$

$n \leq C \quad \forall \ n \geq n_0$

Claim is true
Examples

• Claim: \(21n (\log_2(n) + 1) = \Theta(n \log_2 n)\)
Other Notations

- **Big-O (≤):** $T(n) = O(f(n))$ if $T(n) \leq c f(n)$, where $n \geq n_0$
- **Big-Omega (≥):** $T(n) = \Omega(f(n))$ if $T(n) \geq c f(n)$, where $n \geq n_0$
- **Theta (=):** $T(n) = \Theta(f(n))$ if $T(n) = O(f(n))$ and $T(n) = \Omega(f(n))$

$c_1 f(n) \leq T(n) \leq c_2 f(n)$, where $n \geq n_0$
Other Notations

• **Big-O (≤)**: \(T(n) = O(f(n)) \) if \(T(n) \leq c f(n) \), where \(n \geq n_0 \)

• **Little-o (<)**

• **Big-Omega (≥)**: \(T(n) = \Omega(f(n)) \) if \(T(n) \geq c f(n) \), where \(n \geq n_0 \)

• **Little-omega (>)**
Examples

Big-O upper bound

- Claim: $21n \left(\log_2(n) + 1 \right) = \Theta(n \log_2 n)$

$$21n \log n + 21n \leq c_2 n \log n \quad \forall n \geq n_0$$

$$-21 n \log n + 21n \leq 21n \log n + 21n \log n \leq c n \log n$$

$$21 n \log n \leq 21 n \log n \quad \forall n \geq n_0$$

$$21n \leq c_2 \log n$$

$$c_2 = 412, \quad n_0 = 2$$

$$T(n) = \Theta(f(n))$$

If and only if we can find values for $c, n_0 > 0$, such that

$$c_1 f(n) \leq T(n) \leq c_2 f(n), \text{ where } n \geq n_0$$

Note: c_1, c_2, n_0 cannot depend on n
Examples

Claim: $21n \cdot (\log_2(n) + 1) = \Theta(n \log_2 n)$

$c_1 f(n) \leq T(n) \leq c_2 f(n)$, where $n \geq n_0$

Note: c_1, c_2, n_0 cannot depend on n
Examples

• Claim: \(21n \ (\log_2(n) + 1) = \Theta(n \log_2 n)\)

\[
\begin{align*}
 c_1 n \log n & \leq 21n \log n + 121 \quad \forall n \geq n_0 \\
 c_2 n \log n & \leq 21n \log n + 21n \\
 c_1 n \log n & \leq 21n \log n \\
 c_1 = 21, \quad c_2 = 42, \quad n_0 = 2
\end{align*}
\]
\(O(f(n)) \): \(T(n) \leq c_2 f(n) \)

\(\Theta(f(n)) \): \(c_1 f(n) \leq T(n) \leq c_2 f(n) \)

\(\Omega(f(n)) \): \(T(n) \geq c_1 f(n) \)
What is $f(n)$?

What are good values for:

• c
• n_0
Insertion Sort vs Merge Sort

Computer A: Insertion Sort
- 10,000 MIPS
- $2n^2$ complexity
- 5.5 hours for 10 million numbers
- 23 days for 100 million numbers

Computer B: Merge Sort
- 10 MIPS
- $O(n \log n)$ complexity
- 20 minutes for 10 million numbers
- 4 hours for 100 million numbers
Simplifying the Comparison

• Why can we remove leading coefficients?

• Why can we remove lower order terms?

• They are both insignificant when compared with the growth of the function.

• They both get factored into the constant “c”