Asymptotic Notation (Big O)

https://cs.pomona.edu/classes/cs140/
Outline

Topics and Learning Objectives
• Discuss total running time
• Discuss asymptotic running time
• Learn about asymptotic notation

Exercise
• Running time
Extra Resources

• Chapter 3: asymptotic notation
Comparing Algorithms and Data Structures

We like to compare algorithms and data structures

- Speed
- Memory usage

We don’t always need to care about little details

We ignore some details anyway

- Data locality
- Differences among operations
Constants

\[0.01n^2 \]

\[100n\log_2(n) \]
Big-O Example Code (ODS 1.3.3)

function_one has a total running time of $2n \log n + 2n - 250$
\[a = \text{function_one}(\text{input_one}) \]

function_two has a total running time of $3n \log n + 6n + 48$
\[b = \text{function_two}(\text{input_two}) \]

• The total running time of the code above is:

\[2n \log n + 2n - 250 + 1 + 3n \log n + 6n + 48 + 1 \]

\[5n \log n + 8n - 200 \]
We don’t care about most of these details
We want to be able to quickly glance at the running time of an algorithm and know how it compares to others
So we say the following

\[5n \log n + 8n - 200 = O(n \log n) \]
Big-O (Asymptotic Running Time)

\[T(n) = O(f(n)) \]

If and only if (iff) we can find values for \(c, n_0 > 0 \), such that

\[T(n) \leq c \ f(n), \text{ where } n \geq n_0 \]

Note: \(c, n_0 \) cannot depend on \(n \)
Searching an array for a given number?

Write an algorithm (in pseudocode):

```
Function FindNum(array, num)
  For val In array
    If val == num
      Return True
    Return False

What is the total running time?
```

What is the total running time?

T(n) = 2n + 1
Searching an array for a given number?

What is the asymptotic running time? \(T(n) = 2n + 1 \)

\[
T(n) = 0(?)
\]

\[
T(n) = O(n)
\]

\[
* T(n) \leq c \cdot n \\
\forall n \geq n_0
\]

\[
2n + 1 \leq c \cdot n \\
\forall n \geq n_0
\]

\(\forall n \geq n_0 \)

\(c = 3 \)

\(n_0 = 1 \)
Search two separate arrays (sequentially) for a given number?

Write an algorithm (in pseudocode):

```
Function FindNumIn2(array1, array2, num)

return FindNum(array1, num) OR FindNum(array2, num)

n = max( array1.length, or array2.length)
2n + O + 2n + O + O + approx O
```

What is the total running time?

$T(n) = 4n + 3$
Search two separate arrays (sequentially) for a given number?

What is the asymptotic running time? $T(n) = 4n + 3 = O(n)$

$T(n) = O(n)$

$4n + 3 \leq C \cdot n \quad \forall \quad n \geq n_0$

$4n + 3 \leq 4n + 3n \leq C \cdot n \quad \forall \quad n \geq n_0$

$3 \leq 3n \Rightarrow n \geq 1$

$C = 7, \; n_0 = 1$
Naive Hash Table $\Rightarrow O(n)$

Searching two arrays for any common number?

Write an algorithm (in pseudocode):

```
Function Find Common (array1, array2)

For val1 In array1
    If FindIn(array2, val1) (2n+1)
        Return True

Return False  \[ T(n) = n + n(2n + 1) + 1 \]
```

What is the total running time?
Searching two arrays for any common number?

What is the asymptotic running time? \(T(n) = 2n^2 + 2n + 1 \)

\[
T(n) \neq O(n) \\
\frac{2n^2 + 2n + 1}{n} \leq C n \\
2n^2 + 2 + \frac{1}{n} \leq C \\
202 + 1 = 203
\]

\[
1,000,000 \\
n_0 = 200
\]
Searching two arrays for any common number?

What is the asymptotic running time? $T(n) = 2n^2 + 2n + 1$

$T(n) = O(n^2)$

$2n^2 + 2n + 1 \leq Cn^2$

$2n^2 + 2n + 1 \leq 2n^2 + 2n^2 + 1n^2 \leq Cn^2, \quad \forall n \geq n_0$

$2n^2 + 2n^2 + 1 \leq 2n^2 + 2n^2 + 1n^2 \leq Cn^2, \quad \forall n \geq n_0$

$C = S_1, \quad n_0 = 1$
Searching a single array for duplicate numbers?

Write an algorithm (in pseudocode):

Function FindDuplicate(array):
 array = MergeSort(array) \(\leq 2 \ln \ln n + 2 \ln n \)
 For i In [1..<array.length] \(\leq \ln n \)
 If array[i-1] == array[i] \(\leq 3n \)
 Return True
 Return False + 1

What is the total running time?

\(2 \ln \ln n + 2 \ln n + 4n + 1 \)

\(2 \ln \ln n + 2Sn + 1 \)
Searching a single array for duplicate numbers?

What is the asymptotic running time? \(T(n) = 21n \log n + 25n + 1 \)

\[
T(n) = O(n \log n)
\]

\[
\frac{21n \log n + 25n + 1}{n \log n n \log n} \leq Cn \log n \quad \forall \ n \geq n_0
\]

\[
\rightarrow 21 + \frac{25}{\log n} + \frac{1}{n \log n} \leq C \quad \forall \ n \geq n_0
\]

\[
\frac{25}{\log n} \leq 0 \rightarrow \frac{25}{\log 2} \rightarrow \frac{25}{\log 2} \rightarrow \frac{25}{26} \rightarrow \frac{1}{\log 2} \rightarrow 1 \rightarrow 1
\]
Searching a single array for duplicate numbers?

What is the asymptotic running time? \(T(n) = 21n \log n + 25n + 1 \)

\[
21 + 1 + \frac{1}{n \log n} \leq C \quad \forall \ n \geq n_0
\]

\(n_0 \geq 2^{25} \)

\[
\frac{1}{n \log n} \leq 1 \quad 21 + 11 \leq C \quad \forall \ n \geq 2^{25}
\]

\(C = 222 \quad n_0 = 2^{25} \)
Big-O Examples

• Claim: $2^{n+10} = O(2^n)$

For $n \geq n_0$

$2^{n+10} \leq c \cdot 2^n \quad A \quad n \geq n_0$

$2^n \cdot 2^{10} \leq c \cdot 2^n \quad A \quad n \geq n_0$

$c = 2^{10}, \quad n_0 = 1$

$T(n) = O(f(n))$

If and only if we can find values for $c, n_0 > 0$, such that

$T(n) \leq c \cdot f(n)$, where $n \geq n_0$

Note: c, n_0 cannot depend on n
Big-O Examples

• Claim: $2^{10n} \notin O(2^n)$

\[
2^{10n} \leq c \cdot 2^n \quad \forall \ n \geq n_0
\]

\[
2^{10n-n} \leq c
\]

\[
2^{an} \leq c \quad \forall \ n \geq n_0
\]
Big-O Examples

• Claim: for every $k \geq 1$, n^k is not $O(n^{k-1})$

\[
\forall k \geq 1 \quad n^k \neq O(n^{k-1})
\]

Note: c, n_0 cannot depend on n
Examples

• Claim: \(21n \log_2(n) + 1 = \Theta(n \log_2 n)\)

\[T(n) = \Theta(f(n)) \]

If and only if we can find values for \(c, n_0 > 0\), such that

\[c_1 f(n) \leq T(n) \leq c_2 f(n), \text{ where } n \geq n_0 \]

Note: \(c_1, c_2, n_0\) cannot depend on \(n\)
Other Notations

• **Big-O (≤)**: $T(n) = O(f(n))$ if $T(n) \leq c \cdot f(n)$, where $n \geq n_0$

• **Big-Omega (≥)**: $T(n) = \Omega(f(n))$ if $T(n) \geq c \cdot f(n)$, where $n \geq n_0$

• **Theta (=)**: $T(n) = \Theta(f(n))$ if $T(n) = O(f(n))$ and $T(n) = \Omega(f(n))$

$$c_1 \cdot f(n) \leq T(n) \leq c_2 \cdot f(n), \text{ where } n \geq n_0$$
Other Notations

• Big-O (\leq) : $T(n) = O(f(n))$ if $T(n) \leq c f(n)$, where $n \geq n_0$
• little-o ($<$)

• Big-Omega (\geq) : $T(n) = \Omega(f(n))$ if $T(n) \geq c f(n)$, where $n \geq n_0$
• Little-omega ($>$)
Examples

Big-O upper bound:

• Claim: $21n (\log_2(n) + 1) = \Theta(n \log_2 n)$

$$21n \log n + 21n \leq c_2 n \log n \quad \forall n \geq n_0$$

$$21n \log n + \boxed{21n} \leq 21n \log n + 21n \log n \leq c_1 n \log n$$

$$21n \log n \leq 21 \log n \quad \sqrt{\frac{42 n \log n \leq c_2 n \log n}{c_2 = 412, \ n_0 = 2}}$$

$T(n) = \Theta(f(n))$

If and only if we can find values for $c, n_0 > 0$, such that

$c_1 f(n) \leq T(n) \leq c_2 f(n)$, where $n \geq n_0$

Note: c_1, c_2, n_0 cannot depend on n
Examples

Claim: $21n (\log_2(n) + 1) = \Theta(n\log_2 n)$

-$c_1 f(n) \leq T(n) \leq c_2 f(n)$, where $n \geq n_0$

Note: c_1, c_2, n_0 cannot depend on n
Examples

• Claim: $21n (\log_2(n) + 1) = \Theta(n \log_2 n)$

\[c_1 n \log n \leq 21n \log n + 21 \leq T(n) \leq 21 \log n + 21n \]

\[c_1 n \log n \leq 21 n \log n \]

\[c_1 = 21 , \quad c_2 = 42 , \quad n_0 = 2 \]
\(O(f(n)) \): \(T(n) \leq c_2 f(n) \)

\(\Theta(f(n)) \): \(c_1 f(n) \leq T(n) \leq c_2 f(n) \)

\(\Omega(f(n)) \): \(T(n) \geq c_1 f(n) \)
What is $f(n)$?

What are good values for:

- c
- n_0
Insertion Sort vs Merge Sort

Computer A: Insertion Sort
- 10,000 MIPS
- $2n^2$ time complexity
- 5.5 hours for 10 million numbers
- 23 days for 100 million numbers

Computer B: Merge Sort
- 10 MIPS
- $O(n \log n)$ time complexity
- 20 minutes for 10 million numbers
- 4 hours for 100 million numbers
Simplifying the Comparison

• Why can we remove leading coefficients?

• Why can we remove lower order terms?

• They are both insignificant when compared with the growth of the function.

• They both get factored into the constant “c”