Dijkstra’s Example

For the following graph, what is the length of the shortest path from D to all other vertices?

FUNCTION Dijkstra(G, start_vertex)
 found = {}
 lengths = {v: INFINITY FOR v IN G.vertices}
 found.add(start_vertex)
 lengths[start_vertex] = 0

 WHILE found.length != G.vertices.length
 FOR v IN found
 FOR vOther, weight IN G.edges[v]
 IF vOther NOT IN found
 vOther_length = lengths[v] + weight
 IF vOther_length < min_length
 min_length = vOther_length
 vMin = vOther
 found.add(vMin)
 lengths[vMin] = min_length

RETURN lengths

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You must show your work below to receive full credit. Specifically, show your candidate edges for each iteration of Dijkstra’s Shortest Path Algorithm. \(\text{min_length} \) is set to infinity at the top of every while-loop iteration.