Clustering
Clustering

Goal: given a set of n “points” we should group the points in some sensible manner.

What are some possible sets of points?
• Webpages, images, genome fragments, people, etc.

For anyone interested in machine learning, clustering is a relative of unsupervised learning.
Clustering

Assumptions:
1. We are given a similarity (or dissimilarity) value for all points
2. Similarities are symmetric

\[d(p, q) \] is the similarity between points \(p \) and \(q \)
And \(d(p, q) = d(q, p) \)

Examples include Euclidean distance and edit distance
Goal: cluster "nearby" points
Goal: cluster "nearby" points
Goal: cluster "nearby" points
Clustering Topics/Algorithms

- Related to data mining, statistical data analysis, machine learning, pattern recognition, image analysis, information retrieval, bioinformatics, data compression, and computer graphics.

- Hierarchical clustering
- Centroid clustering (*k-means*)
- Distribution Clustering
- Density Clustering
Max-Spacing K-Clustering

• We assume that we know a good value for k, where k is the number of clusters that we are going to form.
• k is not discovered completely automatically (pick a few values and try them out).

• Two p and q points are separated if they are in different clusters.
• Thus, points that are similar should not be separated.
• Spacing for a set of k-clusters is given by:

$$S = \min_{\text{for all separated } p,q} d(p, q)$$

• Given the above definition, do you think it is better to have a small or large S?
Max-Spacing K-Clustering

• **Problem statement**: given a distance measure \(d\) and a number of clusters \(k\), compute the \(k\)-clustering with a maximum spacing \(S\).

• Let’s solve this problem with a greedy approach.

• **Greedy algorithm setup**:
 • We will not care about the number of clusters we produce until the end
 • We will start by putting every point into its own cluster
 • What is our greedy choice?
 • How do we make spacing bigger each iteration?
Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters

\[
\text{let } p, q = \text{closest pair of separated points}
\]

This is the operation that determines spacing

merge the clusters containing p and q
Max-Spancing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters
 p, q = closest pair of separated points
 merge the clusters containing p and q
Max-Spancing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters
 \[p, q = \text{closest pair of separated points} \]
 merge the clusters containing p and q
Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters
 p, q = closest pair of separated points
 merge the clusters containing p and q

k = 3
Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters
 p, q = closest pair of separated points
 merge the clusters containing p and q

$k = 3$
Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters

\[p, q = \text{closest pair of separated points} \]

merge the clusters containing \(p \) and \(q \)
Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters
 p, q = closest pair of separated points
 merge the clusters containing p and q

k = 3
Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters
 \(p, q = \text{closest pair of separated points} \)
 merge the clusters containing \(p \) and \(q \)

\(k = 3 \)
Max-Spaning K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters
 p, q = closest pair of separated points
 merge the clusters containing p and q

k = 3
Does this algorithm look familiar?

• This procedure is nearly identical to Kruskal’s Algorithm for MST
Kruskals

Sort E by edge cost

$T = \text{empty}$

Each vertex into disjoint set

Repeat until only 1 set:

$u, v = \text{next cheapest edge}$

if $\text{Find}(u) = \text{Find}(v)$

merge sets

Max-Spacing k-Clustering

Each point into own cluster

Repeat until only k clusters:

$p, q = \text{next closest points}$

if p and q are separated

merge clusters
Does this algorithm look familiar?

• This procedure is nearly identical to Kruskal’s Algorithm for MST

• What are the vertices?
• What are the edge costs?
• How many edges are there?
 • This gives us a “complete” graph.

• Using Kruskal’s algorithm for cluster is called single link clustering.
Proof

• **Theorem**: single-link clustering finds the max-spacing k-clustering of a set of points.
• Although we are using Kruskal’s algorithm, the objective has changed.
• So, we cannot use the proof from before.

• Let C_1, \ldots, C_k be the k clusters computed by the greedy algorithm
• Let S be the spacing of these k clusters
• Let C_1', \ldots, C_k' be any other k clusters, with spacing S'

• To prove our theorem, we need to show that $S' \leq S$
Proof of Single-Link Clustering

• Note: it would be bad to find a case where $S' > S$

• **Case 1 (edge case):** C1’, ..., Ck’ are just a renaming C1, ..., Ck

 • In which case, $S' = S$ and we are done with this case

• **Case 2:** We can find a pair of points a and b such that:
 • a and b are in the same greedy cluster Ci
 • a and b are in different clusters Ca’, Cb’
Proof of Single-Link Clustering

• Case 2a: points a and b are \textbf{directly} merged at some point
• How does $d(a, b)$ relate to S?
Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters
 $p, q =$ closest pair of separated points
 merge the clusters containing p and q

$$S = \min_{\text{for all separated } p, q} d(p, q)$$
Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only \(k \) clusters
 \(p, q = \) closest pair of separated points
 merge the clusters containing \(p \) and \(q \)

\[
S = \min_{\text{for all separated } p,q} d(p,q)
\]
Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only \(k \) clusters

\(p, q = \) closest pair of separated points
merge the clusters containing \(p \) and \(q \)

\[
S = \min_{for \ all \ separated \ p, q} d(p, q)
\]
Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters

$p, q =$ closest pair of separated points
merge the clusters containing p and q

$$S = \min_{\text{for all separated } p, q} d(p, q)$$
Max-Spacing K-Clustering

Put each point into its own cluster

Repeat until we have only k clusters
p, q = closest pair of separated points
merge the clusters containing p and q

$$S = \min_{\text{for all separated } p,q} d(p, q)$$
Proof of Single-Link Clustering

• **Case 2a**: points a and b are **directly** merged at some point during the greedy algorithm

• How does $d(a, b)$ relate to S?

• If two points a and b are directly merged, then $S \geq d(a, b)$

• Additionally, the distance between any two merged points only goes up (or stays the same) after each iteration
Proof of Single-Link Clustering

• Case 2a: points a and b are directly merged at some point during the greedy algorithm

• How does $d(a, b)$ relate to S?

• If two points a and b are directly merged, then $S \geq d(a, b)$

• Additionally, the distance between any two merged points only goes up (or stays the same) after each iteration

• So we have that $S' \leq d(a, b) \leq S \implies S' \leq S$

Case 2: We can find a pair of points a and b such that:
- a and b are in the same greedy cluster C_i
- a and b are in different clusters C_a', C_b'

To prove our theorem, we need to show that $S' \leq S$
Proof of Single-Link Clustering

- **Case 2b**: points a and b are *indirectly* merged at some point during the greedy algorithm.
- How does $d(a, b)$ relate to S?
- Lines denote direct merges.
- All points are in the same cluster in the end.
Proof of Single-Link Clustering

- **Case 2b**: points a and b are *indirectly* merged at some point during the greedy algorithm.

- Let $\langle a, a_1, \ldots, a_L, b \rangle$ be the path of direct merges connecting a and b.

- Since a is in C_a' and b is in C_b' there must be some consecutive pair where a_j is in C_a' and a_{j+1} is in C_b'.

- Thus $S' \leq d(a_j, a_{j+1}) \leq S \Rightarrow S' \leq S$.
Proof of Single-Link Clustering

- So, we have proved that under all circumstances, S is the biggest possible spacing for the points.
- Thus, the greedy (Kruskal’s-based) algorithm is optimal and correct.