



Extensible array

Sequential locations in memory in linear order

Elements are accessed via index

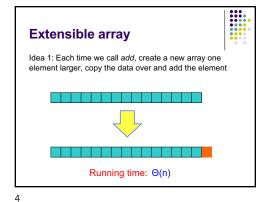
• Access of particular indices is O(1)

Say we want to implement an array that supports add (i.e. append)

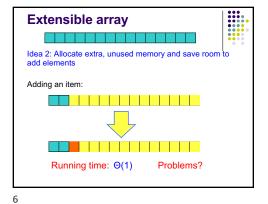
• ArrayList in Java

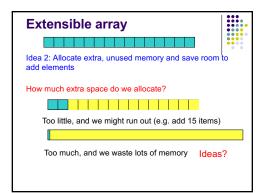
• lists in Python, perl, Ruby, ...

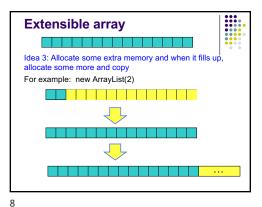
How can we do it?

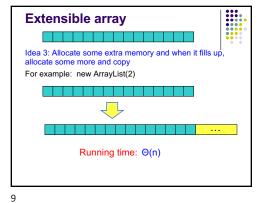


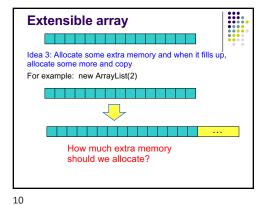


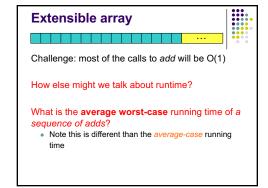


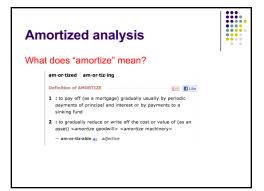












## **Amortized analysis**

There are many situations where the worst case running time is bad

However, if we average the operations over n operations, the average time is more reasonable

This is called amortized analysis

- This is different than average-case running time, which requires probabilistic reasoning about input
- The worse case running time doesn't change

#### What are the costs?



Assume we start with an array of size 1 and double each time

Insertion: 1 2 3 4 5 6 7 8 9 10 size: 1 2 4 4 8 8 8 8 16 16

cost:

Count: 1) inserting element and 2) copying elements

13

18

17

19

## What are the costs?



Assume we start with an array of size 1 and double each time

Insertion: 1 2 3 4 5 6 7 8 9 10 size: 1 2 4 4 8 8 8 8 16 16 cost: 1 2 3 1 5 1 1 1 9 1

Count: 1) inserting element and 2) copying elements

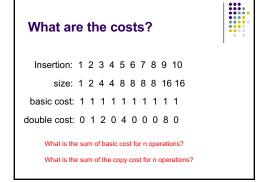
#### What are the costs?

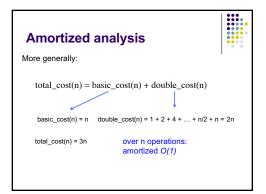


Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16
basic cost: 1 1 1 1 1 1 1 1 1 1
double cost: 0 1 2 0 4 0 0 0 8 0

Count: 1) inserting element and 2) copying elements





21

# Amortized analysis vs. worse case

What is the worse case of add?

- Still θ(n)
- If you have an application that needs it to be O(1), this implementation will not work!

amortized analysis give you the cost of n operations (i.e., average cost) **not** the cost of any individual operation

## **Extensible arrays**



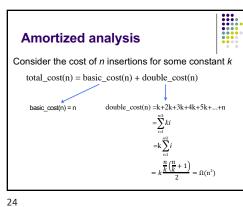
What if instead of doubling the array, we increase the array by a fixed amount (call it  $\it k$ ) each time

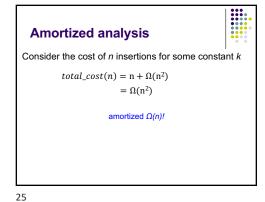
Is the amortized run-time still O(1)?

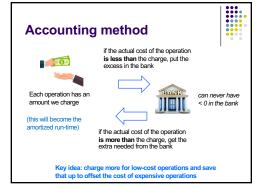
- No!
- Why?

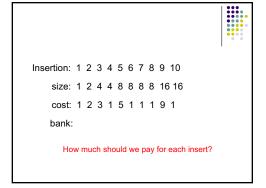
22

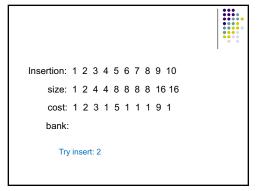
23











```
Insertion: 1 2 3 4 5 6 7 8 9 10
size: 1 2 4 4 8 8 8 8 16 16
cost: 1 2 3 1 5 1 1 1 9 1
bank:

Try insert: 2

How much is left?
```

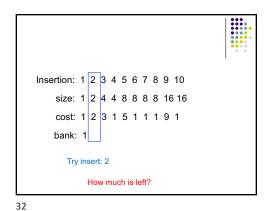
30

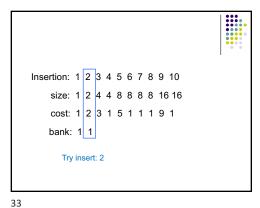
29

31

Insertion: 1 2 3 4 5 6 7 8 9 10
size: 1 2 4 4 8 8 8 8 16 16
cost: 1 2 3 1 5 1 1 1 9 1
bank: 1

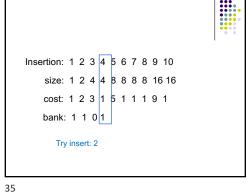
Try insert: 2

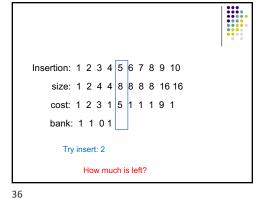


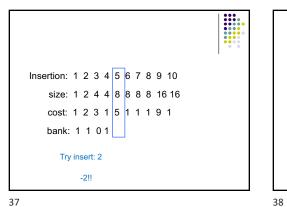


```
Insertion: 1 2 3 4 5 6 7 8 9 10
   size: 1 2 4 4 8 8 8 8 16 16
   cost: 1 2 3 1 5 1 1 1 9 1
   bank: 1 1 0
      Try insert: 2
```

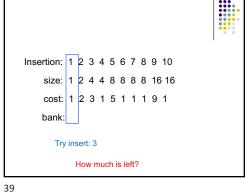
34

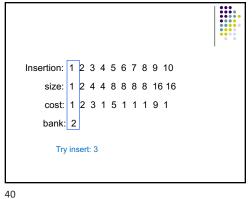


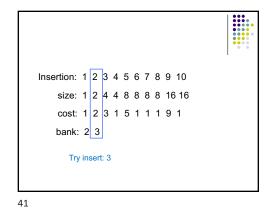


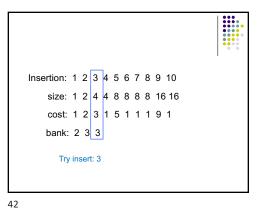


```
Insertion: 1 2 3 4 5 6 7 8 9 10
    size: 1 2 4 4 8 8 8 8 16 16
    cost: 1 2 3 1 5 1 1 1 9 1
   bank:
      Try insert: ??
```



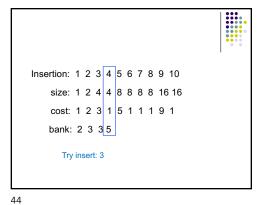






Insertion: 1 2 3 4 5 6 7 8 9 10
size: 1 2 4 4 8 8 8 8 16 16
cost: 1 2 3 1
bank: 2 3 3

Try insert: 3



43

```
Insertion: 1 2 3 4 5 6 7 8 9 10
size: 1 2 4 4 8 8 8 8 16 16
cost: 1 2 3 1 5 1 1 1 9 1
bank: 2 3 3 5 3 5 7 9

Try insert: 3
```

```
Insertion: 1 2 3 4 5 6 7 8 9 10
size: 1 2 4 4 8 8 8 8 8 16 16
cost: 1 2 3 1 5 1 1 1 9 1
bank: 2 3 3 5 3 5 7 9 3

Try insert: 3
```

46

Insertion: 1 2 3 4 5 6 7 8 9 10

ertion: 1 2 3 4 5 6 7 8 9 10 size: 1 2 4 4 8 8 8 8 16 16 cost: 1 2 3 1 5 1 1 1 9 1 bank: 2 3 3 5 3 5 7 9 3

Try insert: 3

45

47

Will this work??

Insertion: 1 2 3 4 5 6 7 8 9 10

size: 1 2 4 4 8 8 8 8 16 16

cost: 1 2 3 1 5 1 1 1 9 1

bank: 2 3 3 5 3 5 7 9

Try insert: 3

1: pay for our operation Getting ready for the copy: 1: pay for our cop

48

## **Accounting method**



Insert pay 3 = O(1)!

49

Particularly useful when there are multiple operations

#### Another set data structure



We want to support fast lookup and insertion (i.e. faster than linear)

Arrays can easily be made to be fast for one or the other

- · fast search: keep list sorted
- O(n) insert
- O(log n) search
- fast insert: extensible array
- O(1) insert (amortized)
- O(n) search

50

### Another set data structure



Idea: store data in a collection of arrays

- array i has size 2<sup>i</sup>
- an array is either full or empty (never partially full)
- · each array is stored in sorted order
- no relationship between arrays

## Another set data structure



Which arrays are full and empty are based on the number of elements

- specifically, binary representation of the number of elements
- 4 items = 100 = A2-full, A1-empty, A0-empty
   11 items = 1011 = A0-full, A2-empty, A1-full, A0-full

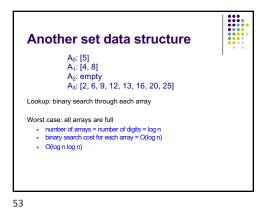
A<sub>0</sub>: [5] A<sub>1</sub>: [4, 8]

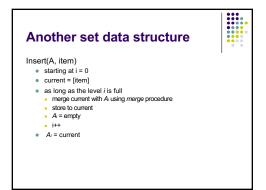
A<sub>2</sub>: empty A<sub>3</sub>: [2, 6, 9, 12, 13, 16, 20, 25]

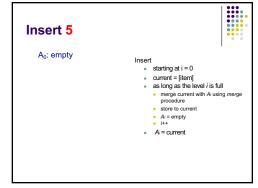
Lookup: binary search through each array

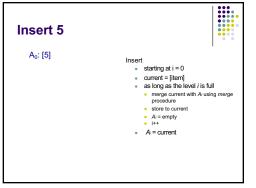
Worst case runtime?

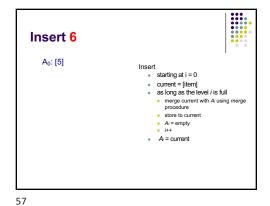
51 52

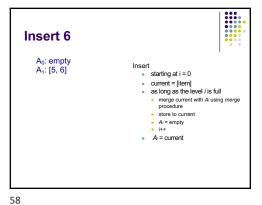












Insert 12

A<sub>0</sub>: empty
A<sub>1</sub>: [5, 6]

Insert

• starting at i = 0

• current = [item]

• as long as the level i is full

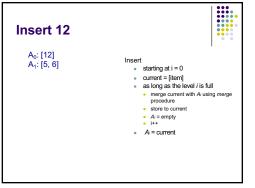
• merge current with A using merge procedure

• store to current

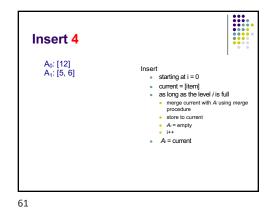
• Ai = empty

• i++

• A = current



59 60



Insert 4

A<sub>0</sub>: empty
A<sub>1</sub>: empty
A<sub>2</sub>: [4, 5, 6, 12]

Insert

• starting at i = 0
• current = [item]
• as long as the level i is full
• merge current with A using merge procedure
• store to current
• A = empty
• i++
• A = current

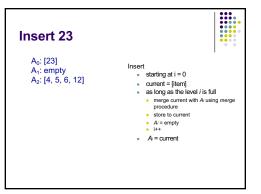
62

Insert 23

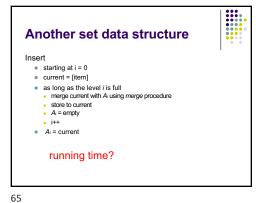
A<sub>0</sub>: empty
A<sub>1</sub>: empty
A<sub>2</sub>: [4, 5, 6, 12]

Insert

• starting at i = 0
• current = [item]
• as long as the level i is full
• merge current with Ai using merge procedure
• store to current
• Ai = empty
• i++
• A = current



63



Insert running time Worst case merge at each level • 2 + 4 + 8 + ... + n/2 + n = O(n)There are many insertions that won't fall into this worse case What is the amortized worse case for insertion?

66

## insert: amortized analysis Consider inserting n numbers how many times will A₀ be empty? how many times will we need to merge with A<sub>0</sub>? how many times will we need to merge with A<sub>1</sub>? how many times will we need to merge with A<sub>2</sub>? how many times will we need to merge with A<sub>log n</sub>?

insert: amortized analysis times Consider inserting n numbers how many times will A₀ be empty? how many times will we need to merge with A<sub>0</sub>? n/2 • how many times will we need to merge with A<sub>1</sub>? n/4 how many times will we need to merge with A<sub>2</sub>? n/8 how many times will we need to merge with Alog n? 1 cost of each of these steps?

68 67

