More Recurrences

David Kauchak
.cs140
Spring 2024

Administrative

Group sessions
Assignment 1

Recurrence

A function that is defined with respect to itself on smaller inputs

\[
T(n) = 2T(n/2) + n \\
T(n) = 16T(n/4) + n \\
T(n) = 2T(n-1) + n^2
\]

The challenge

Recurrences are often easy to define because they mimic the structure of the program

But... they do not directly express the computational cost, i.e. \(n, n^2, \ldots \)

We want to remove self-recurrence and find a more understandable form for the function
Three approaches

Substitution method: when you have a good guess of the solution, prove that it’s correct.

Recursion-tree method: If you don’t have a good guess, the recursion tree can help. Then solve with substitution method.

Master method: Provides solutions for recurrences of the form:

\[T(n) = aT\left(\frac{n}{b}\right) + f(n) \]

Recursion Tree

Guessing the answer can be difficult

\[T(n) = 3T\left(\frac{n}{4}\right) + n^2 \]

\[T(n) = T\left(\frac{n}{3}\right) + 2T\left(\frac{2n}{3}\right) + cn \]

The recursion tree approach:

- Draw out the cost of the tree at each level of recursion
- Sum up the cost of the levels of the tree
- Find the cost of each level with respect to the depth
- Figure out the depth of the tree
- Figure out (or bound) the number of leaves
- Verify your answer using the substitution method

```
T(n) = 3T(n/4) + n²
cost

T(n) = 3T(n/4) + n²
cost
```

```
T(n) = 3T(n/4) + n²
cost

T(n) = 3T(n/4) + n²
cost
```
What is the cost at each level?

\[T(n) = 3T(n/4) + n^2 \]

\[\text{cost} \]

At each level, the size of the data is divided by 4

\[\frac{n}{4} = 1 \]

\[\log(\frac{n}{4}) = 0 \]

\[\log n - \log 4 = 0 \]

\[d \log 3 = \log n \]

\[d = \log_3 n \]

What is the depth of the tree?

How many leaves are there?

How many leaves are there in a complete ternary tree of depth \(d \)?

\[3^d = 3^{\log_3 n} \]
Recursion tree

If you went through the exact calculation (like we just did), you can be done!

Often, this isn’t feasible (or desirable)

Instead, use the recursion tree to get a good guess

Verify solution using substitution

\[T(n) = 3T(n/4) + n^2 \]

Assume \(T(k) = O(k^2) \) for all \(k < n \)

Show that \(T(n) = O(n^2) \)

Given that \(T(n/4) = O((n/4)^2) \), then

\[O(g(n)) = \begin{cases} \frac{f(n)}{n} : & \text{there exists positive constants } c \text{ and } n_0 \text{ such that } \\ & 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \end{cases} \]

\[T(n/4) \leq c(n/4)^2 \]
Master Method

Provides solutions to the recurrences of the form:

\[T(n) = aT(n/b) + f(n) \]

- If \(f(n) = O(n^{\log_b a - \epsilon}) \) for \(\epsilon > 0 \), then \(T(n) = \Theta(n^{\log_b a}) \)
- If \(f(n) = \Theta(n^{\log_b a}) \), then \(T(n) = \Theta(n^{\log_b a} \log n) \)
- If \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) for \(\epsilon > 0 \) and \(af(n/b) \leq cf(n) \) for \(c < 1 \), then \(T(n) = \Theta(f(n)) \)

\[T(n) = 3T(n/4) + n^2 \]

To prove that \(T(n) = \Theta(n^2) \) we need to identify the appropriate constants:

\[O(g(n)) = \Theta(f(n)) \text{ if } \exists c > 0 \text{ such that } T(n) \leq cn^2 \]

\[T(n) = 3T(n/4) + n^2 \]

\[\leq 3(n/4)^2 + n^2 \]

\[= 3n^2/16 + n^2 \]

\[= cn^2 - cn^{13/16} + n^2 \]

residual

a constant exists if \(-cn^{13/16} + n^2 \leq 0\)

\[T(n) = 16T(n/4) + n \]

if \(f(n) = O(n^{1/4}) \) then \(T(n) = O(n^{1/4} \log n) \)

\[t(n) = 4n + n \]

\[a = 16 \quad n^{log_b a} = n^{\log_4 16} \]

\[b = 4 \quad n^t = n^1 \]

\[f(n) = n \]

\[\text{Case 1: } \Theta(n^2) \]
Let $c = \frac{1}{2}$.

Case 3?

Case 2: $\Theta(n) = \Theta(\log n)$

Case 3?

$T(n) = \Theta(2^n)$
\(T(n) = 16T(n/4) + n! \)

- if \(f(n) = O(n^{-\epsilon}) \) for \(\epsilon > 0 \), then \(T(n) = O(n^{\Theta(\log n)}) \)
- if \(f(n) = O(n^{\epsilon}) \), then \(T(n) = O(n^{\Theta(\log n)}) \)
- if \(f(n) = O(n^{\Theta(\log n)}) \) for \(\epsilon > 0 \) and \(n/4 \leq n/2 \)

is \(16(n/4)! \leq cn! \) for \(c < 1 \)?

Let \(c_1 = 1/2 \)
\[c_1 n! = 1/2 n! > (n/2)! \]

therefore,
\[16(n/4)! \leq (n/2)! < 1/2 n! \]

\[T(n) = \Theta(n!) \]

\(T(n) = \sqrt{2}T(n/2) + \log n \)

- if \(f(n) = O(n^{-\epsilon}) \) for \(\epsilon > 0 \), then \(T(n) = O(n^{\Theta(\log n)}) \)
- if \(f(n) = O(n^{\epsilon}) \), then \(T(n) = O(n^{\Theta(\log n)}) \)
- if \(f(n) = O(n^{\Theta(\log n)}) \) for \(\epsilon > 0 \) and \(n/4 \leq n/2 \)

is \(\log n = O(n^{1/2}) \)?

is \(\log n = \Theta(n^{1/2}) \)?

Case 1: \(\Theta(n^{1/2}) \)

\(T(n) = 4T(n/2) + n \)

- if \(f(n) = O(n^{-\epsilon}) \) for \(\epsilon > 0 \), then \(T(n) = O(n^{\Theta(\log n)}) \)
- if \(f(n) = O(n^{\epsilon}) \), then \(T(n) = O(n^{\Theta(\log n)}) \)
- if \(f(n) = O(n^{\Theta(\log n)}) \) for \(\epsilon > 0 \) and \(n/4 \leq n/2 \)

is \(n = O(n^{\Theta(\log n)}) \)?

Case 1: \(\Theta(n^{\Theta(\log n)}) \)

Recurrences

\(T(n) = 2T(n/3) + d \)

\(T(n) = 7T(n/7) + n \)

\(T(n) = T(n-1) + \log n \)

\(T(n) = 8T(n/2) + n^{1/2} \)
Why does the master method work?

Why does the master method work?
Total cost

\[T(n) = \sum_{i=1}^{\log_2 n} (c_i f(n) + O(n^{a_i})) \]

Case 2: cost is evenly distributed across tree

As we saw with mergesort, \(\log(n) \) levels to the tree and at each level \(f(n) \) work.

Other forms of the master method

\[T(n) = aT(n/b) + O(n^d) \]

- \(O(n^d) \) if \(d > \log_b a \)
- \(O(n^d \log a) \) if \(d = \log_b a \)
- \(O(n^{d+\epsilon}) \) if \(d < \log_b a \)

Changing variables

\[T(n) = 2T(\sqrt{n}) + \log n \]

Guesses?

We can do a variable change: let \(m = \log_2 n \) (or \(n = 2^m \))

\[T(2^m) = 2T(2^{m/2}) + m \]

Now, let \(S(m) = T(2^m) \)

\[S(m) = 2S(m/2) + m \]
Changing variables

\[S(m) = 2S(m/2) + m \]

Guess? \[S(m) = O(m \log m) \]

\[T(n) = T(2^m) = S(m) = O(m \log m) \]

substituting \(m = \log n \)

\[T(n) = O(\log n \log \log n) \]