More Recurrences

David Kauchak

cs140
Spring 2023

Recurrence

A function that is defined with respect to itself on smaller inputs

\[T(n) = 2T(n/2) + n \]
\[T(n) = 16T(n/4) + n \]
\[T(n) = 2T(n-1) + n^2 \]

The challenge

Recurrences are often easy to define because they mimic the structure of the program

But... they do not directly express the computational cost, i.e. \(n, n^2, \ldots \)

We want to remove self-recurrence and find a more understandable form for the function
Three approaches

Substitution method: when you have a good guess of the solution, prove that it’s correct.

Recursion-tree method: If you don’t have a good guess, the recursion tree can help. Then solve with substitution method.

Master method: Provides solutions for recurrences of the form:
\[T(n) = aT(n/b) + f(n) \]

Substitution method

Guess the form of the solution
Then prove it’s correct by induction

\[T(n) = T(n/2) + d \]

Halves the input then constant amount of work

Similar to binary search:
Guess: \(O(\log_2 n) \)

Guess the solution?
Recurses into 2 sub-problems that are half the size and performs some operation on all the elements \(O(n \log n) \)

What if we guess wrong, e.g. \(O(n^2) \)?

Assume \(T(k) = O(k^2) \) for all \(k < n \)
- again, this implies that \(T(n/2) \leq c(n/2)^2 \)
Show that \(T(n) = O(n^2) \)

\[T(n) = 2T(n/2) + n \]

Guess the solution?
- Recurses into 2 sub-problems that are half the size and performs some operation on all the elements \(O(n \log n) \)

What if we guess wrong, e.g. \(O(n^2) \)?

Assume \(T(k) = O(k^2) \) for all \(k < n \)
- again, this implies that \(T(n/2) \leq c(n/2)^2 \)
Show that \(T(n) = O(n^2) \)

\[T(n) = 2T(n/2) + n \]
\[\leq 2c(n/2)^2 + n \] from our inductive hypothesis
\[= 2cn^2/4 + n \]
\[= 1/2cn^2 + n \]
\[= cn^2 - (1/2cn^2 - n) \] residual

if
\[-(1/2cn^2 - n) \leq 0 \]
\[-1/2cn^2 + n \leq 0 \]
\[cn \geq 2 \]

overkill?
What if we guess wrong, e.g. $O(n)$?
Assume $T(k) = O(k)$ for all $k < n$
Again, this implies that $T(n/2) \leq c(n/2)$
Show that $T(n) = O(n)$

$$T(n) = 2T(n/2) + n$$

$$\leq 2cn/2 + n$$

$$= cn + n$$

$$\leq cn$$

\text{factor of } n \text{ so we can just roll it in?}$$

Recurse, recall $T(k) = O(k)$ for all $k < n$
Show that $T(n) = O(n)$

$$T(n) = 2T(n/2) + n$$

$$\leq 2cn/2 + n$$

$$= cn + n$$

$$\leq cn$$

\text{factor of } n \text{ so we can just roll it in?}

Must prove the exact form!

Recursion Tree

Guessing the answer can be difficult

$T(n) = 3T(n/3) + n^2$

$T(n) = T(n/3) + 2T(2n/3) + cn$

The recursion tree approach

- Draw out the cost of the tree at each level of recursion
- Sum up the cost of the levels of the tree
- Find the cost of each level with respect to the depth
- Figure out the depth of the tree
- Figure out (or bound) the number of leaves
- Verify your answer using the substitution method
What is the depth of the tree?

At each level, the size of the data is divided by 4

\[
\begin{align*}
\frac{n}{4^d} &= 1 \\
\log \left(\frac{n}{4^d}\right) &= 0 \\
\log n - \log 4^d &= 0 \\
d \log 4 &= \log n \\
d &= \log_4 n
\end{align*}
\]
How many leaves?

How many leaves are there in a complete ternary tree of depth d?

$$3^d = 3^{\log_4 n}$$

Total cost

$$T(n) = 3T(n/4) + n^2$$

$$T(1)$$

Total cost

$$T(n) = \frac{16}{13}cn^2 + \Theta(n^{3\log_43})$$

Assignment 1!

$3^{\log_4 n} = 4^{\log_4 n^{3\log_43}}$

$= n^{\log_43}\cdot n^{3\log_43}$

$= n^{3\log_43}$

$T(n) = \frac{16}{13}cn^2 + \Theta(n^{3\log_43})$

$T(n) = O(n^2)$

let $x = 3/16$
Recursion tree

If you went through the exact calculation (like we just did), you can be done!

Often, this isn’t feasible (or desirable)

Instead, use the recursion tree to get a good guess

Verify solution using substitution

\[T(n) = 3T\left(\frac{n}{4}\right) + n^2 \]

Assume \(T(k) = O(k^2) \) for all \(k < n \)

Show that \(T(n) = O(n^2) \)

Given that \(T(n/4) = O((n/4)^2) \), then

\[T(n/4) \leq c(n/4)^2 \]

To prove that \(T(n) = O(n^2) \) we need to identify the appropriate constants:

\[O(g(n)) = \left\{ f(n) : \text{there exists positive constants } c \text{ and } n \text{ such that } \right. \]

\[0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \]

\[c \text{ such that } T(n) \leq cn^2 \]

\[T(n) = 3T\left(\frac{n}{4}\right) + n^2 \]

\[\leq 3c(n/4)^2 + n^2 \]

\[= cn^2/3 + 16 + n^2 \]

\[= cn^2 - cn^2 \times \frac{13}{16} + n^2 \] residual

a constant exists if, if \(-cn^2 \times \frac{13}{16} + n^2 \leq 0\)
Master Method

Provides solutions to the recurrences of the form:

$$ T(n) = aT(n/b) + f(n) $$

if \(f(n) = O(n^{\log_a b - \epsilon}) \) for \(\epsilon > 0 \), then \(T(n) = \Theta(n^{\log_a b}) \)
if \(f(n) = \Theta(n^{\log_a b}) \), then \(T(n) = \Theta(n^{\log_a b} \log n) \)
if \(f(n) = \Omega(n^{\log_a b + \epsilon}) \) for \(\epsilon > 0 \) and \(af(n/b) \leq cf(n) \) for \(c < 1 \)
then \(T(n) = \Theta(f(n)) \)

Case 3?

- is \(2^x = O(n^{0 - \epsilon}) \)?
- is \(2^x = \Theta(n^x) \)?
- is \(2^x = \Omega(n^{0 + \epsilon}) \)?

T(n) = 16T(n/4) + n

if \(f(n) = O(n^{\log_a b - \epsilon}) \) for \(\epsilon > 0 \), then \(T(n) = \Theta(n^{\log_a b}) \)
if \(f(n) = \Theta(n^{\log_a b}) \), then \(T(n) = \Theta(n^{\log_a b} \log n) \)
if \(f(n) = \Omega(n^{\log_a b + \epsilon}) \) for \(\epsilon > 0 \) and \(af(n/b) \leq cf(n) \) for \(c < 1 \)
then \(T(n) = \Theta(f(n)) \)

\[a = 16 \]
\[b = 4 \]
\[f(n) = n \]

\[n^{\log_a b} = n \]

is \(n = O(n^{2 - \epsilon}) \)?
is \(n = \Theta(n^2) \)?
is \(n = \Omega(n^{2 + \epsilon}) \)?

T(n) = T(n/2) + 2^n

if \(f(n) = O(n^{\log_a b - \epsilon}) \) for \(\epsilon > 0 \), then \(T(n) = \Theta(n^{\log_a b}) \)
if \(f(n) = \Theta(n^{\log_a b}) \), then \(T(n) = \Theta(n^{\log_a b} \log n) \)
if \(f(n) = \Omega(n^{\log_a b + \epsilon}) \) for \(\epsilon > 0 \) and \(af(n/b) \leq cf(n) \) for \(c < 1 \)
then \(T(n) = \Theta(f(n)) \)

\[a = 1 \]
\[b = 2 \]
\[f(n) = 2^n \]

\[n^{\log_a b} = n^{\log_2 1} = n^0 \]

is \(2^x = O(n^{0 - \epsilon}) \)?
is \(2^x = \Theta(n^x) \)?
is \(2^x = \Omega(n^{0 + \epsilon}) \)?

T(n) = T(n/2) + 2^n

if \(f(n) = O(n^{\log_a b - \epsilon}) \) for \(\epsilon > 0 \), then \(T(n) = \Theta(n^{\log_a b}) \)
if \(f(n) = \Theta(n^{\log_a b}) \), then \(T(n) = \Theta(n^{\log_a b} \log n) \)
if \(f(n) = \Omega(n^{\log_a b + \epsilon}) \) for \(\epsilon > 0 \) and \(af(n/b) \leq cf(n) \) for \(c < 1 \)
then \(T(n) = \Theta(f(n)) \)

is \(2^x \leq c2^n \) for \(c < 1 \)?

Let \(c = 1/2 \)

\[2^{x+1} \leq (1/2)2^n \]
\[2^x \leq 2^{x+1} \]
\[2^{x+1} \leq 2^x \]

T(n) = \Theta(2^n)
\[T(n) = 2T(n/2) + n \]

if \(f(n) = O(n^{\log_2 2}) \) for \(c > 0 \), then \(T(n) = \Theta(n^{\log_2 2}) \)

if \(f(n) = \Theta(n^{\log_2 2}) \), then \(T(n) = \Theta(n^{\log_2 2} \log n) \)

if \(f(n) = \Omega(n^{\log_2 2}) \) for \(c > 0 \) and \(e(n/b) \leq e(n) \) for \(c < 1 \)

\[a = 2 \quad b = 2 \quad f(n) = n \]

is \(n = O(n^{\log_2 2}) \)?

is \(n = \Theta(n^{\log_2 2}) \)?

is \(n = \Omega(n^{\log_2 2}) \)?

Case 2: \(\Theta(n \log n) \)

\[T(n) = 16T(n/4) + n! \]

if \(f(n) = O(n^{\log_{16} 4}) \) for \(c > 0 \), then \(T(n) = \Theta(n^{\log_{16} 4}) \)

if \(f(n) = \Theta(n^{\log_{16} 4}) \), then \(T(n) = \Theta(n^{\log_{16} 4} \log n) \)

if \(f(n) = \Omega(n^{\log_{16} 4}) \) for \(c > 0 \) and \(e(n/b) \leq e(n) \) for \(c < 1 \)

\[a = 16 \quad b = 4 \quad f(n) = n! \]

is \(n! = O(n^{\log_{16} 4}) \)?

is \(n! = \Theta(n^{\log_{16} 4}) \)?

is \(n! = \Omega(n^{\log_{16} 4}) \)?

Case 3: \(n! \)

\[T(n) = \sqrt{2}T(n/2) + \log n \]

if \(f(n) = O(n^{\log_2 \sqrt{2}}) \) for \(c > 0 \), then \(T(n) = \Theta(n^{\log_2 \sqrt{2}}) \)

if \(f(n) = \Theta(n^{\log_2 \sqrt{2}}) \), then \(T(n) = \Theta(n^{\log_2 \sqrt{2}} \log n) \)

if \(f(n) = \Omega(n^{\log_2 \sqrt{2}}) \) for \(c > 0 \) and \(e(n/b) \leq e(n) \) for \(c < 1 \)

\[a = \sqrt{2} \quad b = 2 \quad f(n) = \log n \]

is \(\log n = O(n^{\log_2 \sqrt{2}}) \)?

is \(\log n = \Theta(n^{\log_2 \sqrt{2}}) \)?

is \(\log n = \Omega(n^{\log_2 \sqrt{2}}) \)?

Case 1: \(\Theta(\sqrt{n}) \)
Why does the master method work?

\[T(n) = aT(n/b) + f(n) \]

\(T(n) = 4T(n/2) + n \)

- If \(f(n) = O(n^k \log^i n) \) for \(i > 0 \), then \(T(n) = \Theta(n^k \log^i n) \)
- If \(f(n) = \Theta(n^k \log^i n) \), then \(T(n) = \Theta(n^k \log^{i+1} n) \)
- If \(f(n) = \Omega(n^k \log^i n) \) for \(k > 0 \) and if \(a \leq b^d \) \(\leq c \) \(f(n) \) for \(c < 1 \), then \(T(n) = \Theta(f(n)) \)

\[a = 4 \quad n \log_2 a = n \log_2 4 \]
\[b = 2 \quad n \log_2 b = n^2 \]
\[f(n) = n \]

- \(n = \Theta(n^2) \)
- \(n = \Theta(n^2) \)
- \(n = \Omega(n^2) \)

What is the depth of the tree?

At each level, the size of the data is divided by \(b \)

\[\frac{n}{b^d} = 1 \]
\[\log \left(\frac{n}{b^d} \right) = 0 \]
\[\log n - \log 4^d = 0 \]
\[d \log b = \log n \]
\[d = \log_n n \]

Recurrences

\[T(n) = 2T(n/3) + d \quad T(n) = 7T(n/7) + n \]

- If \(f(n) = O(n^{\log_b c}) \) for \(c > 1 \), then \(T(n) = \Theta(n^{\log_b c}) \)
- If \(f(n) = \Theta(n^{\log_b c}) \), then \(T(n) = \Theta(n^{\log_b c} \log n) \)
- If \(f(n) = \Omega(n^{\log_b c}) \) for \(c > 1 \) and if \(a \leq b^d \) \(\leq c \) \(f(n) \) for \(c < 1 \), then \(T(n) = \Theta(f(n)) \)

\[T(n) = T(n-1) + \log n \quad T(n) = 8T(n/2) + n^3 \]
How many leaves?

How many leaves are there in a complete a-ary tree of depth d?

\[a^d = a^{\log_a n} = n^{\log_a a} \]

Total cost

if \(f(n) = \Theta(n^{c_1}) \) for \(c > 0 \), then \(T(n) = \Theta(n^{c_2}) \)
if \(f(n) = \Theta(n^{c_3}) \), then \(T(n) = \Theta(n^{c_4} \log n) \)
if \(f(n) = \Omega(n^{c_5}) \) for \(c > 0 \) and \(af(n/b) \leq f(n) \) for \(c < 1 \)
then \(T(n) = \Theta(f(n)) \)

\[T(n) = cf(n) + af(n/b) + a^2 f(n/b^2) + \ldots + a^{k-1} f(n/b^{k-1}) + \Theta(n^{c_6}) \]

Case 2: cost is evenly distributed across tree

As we saw with mergesort, \(\log n \) levels to the tree and at each level \(f(n) \) work

Total cost

if \(f(n) = \Theta(n^{c_7}) \) for \(c > 0 \), then \(T(n) = \Theta(n^{c_8}) \)
if \(f(n) = \Theta(n^{c_9}) \), then \(T(n) = \Theta(n^{c_{10} \log n}) \)
if \(f(n) = \Omega(n^{c_{11}}) \) for \(c > 0 \) and \(af(n/b) \leq f(n) \) for \(c < 1 \)
then \(T(n) = \Theta(f(n)) \)

\[T(n) = cf(n) + af(n/b) + a^2 f(n/b^2) + \ldots + a^{k-1} f(n/b^{k-1}) + \Theta(n^{c_{12}}) \]

Case 3: cost is dominated by the cost of the root

As we saw with mergesort, \(\log n \) levels to the tree and at each level \(f(n) \) work
Other forms of the master method

\[T(n) = aT(n/b) + O(n^d) \]

\[
T(n) = \begin{cases}
O(n^d) & \text{if } d > \log_b a \\
O(n^d \log n) & \text{if } d = \log_b a \\
O(n^{d \log_b b}) & \text{if } d < \log_b a
\end{cases}
\]