More Recurrences

David Kauchak

Administrative
Assignment 2

Recurrence
A function that is defined with respect to itself on smaller inputs

\[T(n) = 2T(n/2) + n \]

\[T(n) = 16T(n/4) + n \]

\[T(n) = 2T(n-1) + n^2 \]

The challenge
Recurrences are often easy to define because they mimic the structure of the program

But... they do not directly express the computational cost, i.e. \(n, n^2, \ldots \)

We want to remove self-recurrence and find a more understandable form for the function
Three approaches

Substitution method: When you have a good guess of the solution, prove that it’s correct.

Recursion-tree method: If you don’t have a good guess, the recursion tree can help. Then solve with substitution method.

Master method: Provides solutions for recurrences of the form:

\[T(n) = aT(n/b) + f(n) \]

Substitution method

Guess the form of the solution. Then prove it’s correct by induction.

\[T(n) = T(n/2) + d \]

Halves the input then constant amount of work.

Similar to binary search: Guess: \(O(\log_2 n) \)

Assume \(T(k) = O(\log_2 k) \) for all \(k < n \).

Show that \(T(n) = O(\log_2 n) \).

From our assumption, \(T(n/2) = O(\log_2 n/2) \):

\[O(g(n)) = \begin{cases} f(n) : & \text{there exists positive constants } c \text{ and } n \text{ such that } \ 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \end{cases} \]

From the definition of big-O: \(T(n/2) \leq c \log_2(n/2) \)

How do we now prove \(T(n) = O(\log n) \)?

To prove that \(T(n) = O(\log_2 n) \) identify the appropriate constants:

\[O(g(n)) = \begin{cases} f(n) : & \text{there exists positive constants } c \text{ and } n \text{ such that } \ 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \end{cases} \]

i.e. some constant \(c' \) such that \(T(n) \leq c' \log_2 n \)

\[T(n) = T(n/2) + d \]

\[\leq c \log_2(n/2) + d \quad \text{from our inductive hypothesis} \]

\[\leq c \log_2 n - c \log_2 2 + d \]

\[\leq c \log_2 n + (c + d) \quad \text{residual} \]

Key question: does a constant exist such that:

\[T(n) \leq c \log_2 n \]
To prove that $T(n) = O(\log_2 n)$, identify the appropriate constants:

Key question: does a constant exist such that:

$T(n) \leq c' \log_2 n$

if $c \geq d$, then, yes!
(if not, just let $c' = d$)

Guess the solution?

At each iteration, does a linear amount of work (i.e. iterate over the data) and reduces the size by one at each step $O(n^2)$

Assume $T(k) = O(k^2)$ for all $k < n$

- again, this implies that $T(n-1) \leq c(n-1)^2$

Show that $T(n) = O(n^2)$, i.e. $T(n) \leq c'n^2$
Guess the solution?
Recurses into 2 sub-problems that are half the size and performs some operation on all the elements
$O(n \log n)$

What if we guess wrong, e.g. $O(n^2)$?
Assume $T(k) = O(k^2)$ for all $k < n$
- again, this implies that $T(n/2) \leq c(n/2)^2$
Show that $T(n) = O(n^2)$

$T(n) = 2T(n/2) + n$

What if we guess wrong, e.g. $O(n)$?
Assume $T(k) = O(k)$ for all $k < n$
- again, this implies that $T(n/2) \leq c(n/2)$
Show that $T(n) = O(n)$

$T(n) = 2T(n/2) + n$
$\leq 2c(n/2)^2 + n$ from our inductive hypothesis
$= 2cn^2 / 4 + n$
$= 1/2cn^2 + n$
$= cn^2 - (1/2cn^2 - n)$ residual

if
$-(1/2cn^2 - n) \leq 0$
$-1/2cn^2 + n \leq 0$

$cn \geq 2$

$T(n) = 2T(n/2) + n$

What if we guess wrong, e.g. $O(n(n))$?
Assume $T(k) = O(k)$ for all $k < n$
- again, this implies that $T(n/2) \leq c(n/2)$
Show that $T(n) = O(n)$

$T(n) = 2T(n/2) + n$
$\leq 2cn / 2 + n$
$= cn + n$
$\leq cn$ factor of n so we can just roll it in?

$T(n) = 2T(n/2) + n$

Must prove the exact form!
$cn + n \leq cn$??
Prove $T(n) = O(n \log_2 n)$
Assume $T(k) = O(k \log_2 k)$ for all $k < n$
→ again, this implies that $T(k) = ck \log_2 k$
Show that $T(n) = O(n \log_2 n)$

$T(n) = 2T(n/2) + n$

- $T(n) = 2T(n/2) + n$
- $\leq 2cn / 2 \log(n/2) + n$
- $\leq cn(\log_2 n - \log_2 2) + n$
- $\leq cn \log_2 n + cn + n$
- residual
- $\leq cn \log_2 n$
 if $cn \geq n$, $c > 1$

Recursion Tree

Guessing the answer can be difficult

$T(n) = 2T(n/2) + n$

The recursion tree approach

- Draw out the cost of the tree at each level of recursion
- Sum up the cost of the levels of the tree
- Find the cost of each level with respect to the depth
- Figure out the depth of the tree
- Figure out (or bound) the number of leaves
- Verify your answer using the substitution method

$T(n) = 3T(n/4) + n^2$

$T(n) = 3T(n/4) + n^2$

$T(n) = 3T(n/4) + n^2$

$T(n) = 3T(n/4) + n^2$
What is the cost at each level?

\[T(n) = 3T(n/4) + n^2 \]

Cost

\[\text{cn}^2 \]

\[(3/16) \text{cn}^2 \]

Depth

\[\log_4 n \]

How many leaves?

\[3^d = 3^{\log_4 n} \]
Verify solution using substitution

\[T(n) = 3T(n/4) + n^2 \]

Assume \(T(k) = O(k^2) \) for all \(k < n \)
Show that \(T(n) = O(n^2) \)

Given that \(T(n/4) = O((n/4)^2) \), then

\[O(g(n)) = \begin{cases} f(n) : & \text{there exists positive constants } c \text{ and } n \text{ such that} \\ & 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \end{cases} \]

\[T(n/4) \leq c(n/4)^2 \]

<table>
<thead>
<tr>
<th>Page</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Total cost</td>
</tr>
<tr>
<td></td>
<td>[T(n) = cn^2 + \frac{3}{16}cn^2 + \frac{1}{4}cn^2 + \ldots + \frac{1}{16}cn^2 + \Theta(3^{4^k})]</td>
</tr>
<tr>
<td></td>
<td>[= cn^2 \sum_{k=0}^{\log_2 n - 1} \left(\frac{1}{16} \right)^k + \Theta(3^{4^k})]</td>
</tr>
<tr>
<td></td>
<td>[< cn^2 \sum_{k=0}^{\log_2 n - 1} \left(\frac{1}{16} \right)^k + \Theta(3^{4^k})]</td>
</tr>
<tr>
<td></td>
<td>[= \frac{1}{1 - (3/16)}cn^2 + \Theta(3^{4^k})]</td>
</tr>
<tr>
<td></td>
<td>[= \frac{16}{13}cn^2 + \Theta(3^{4^k})]</td>
</tr>
<tr>
<td></td>
<td>Let (x = 3/16)</td>
</tr>
<tr>
<td>28</td>
<td>Total cost</td>
</tr>
<tr>
<td></td>
<td>[T(n) = \frac{16}{13}cn^2 + \Theta(3^{4^k})]</td>
</tr>
<tr>
<td></td>
<td>Assignment 1!</td>
</tr>
<tr>
<td></td>
<td>[3^{2^{2^{2^k}}} = 4^{4^{4^{4^k}}}]</td>
</tr>
<tr>
<td></td>
<td>[= 4^{4^{4^{4^{4^k}}} \times 3}]</td>
</tr>
<tr>
<td></td>
<td>[= 4^{4^{4^{4^{4^k} \times 3}}}]</td>
</tr>
<tr>
<td></td>
<td>[= n^{4^{4^{4^{4^k} \times 3}}}]</td>
</tr>
<tr>
<td></td>
<td>[T(n) = \frac{16}{13}cn^2 + \Theta(n^{4^{4^{4^k} \times 3}})]</td>
</tr>
<tr>
<td></td>
<td>[T(n) = O(n^2)]</td>
</tr>
<tr>
<td>29</td>
<td>Verify solution using substitution</td>
</tr>
<tr>
<td></td>
<td>[T(n) = 3T(n/4) + n^2]</td>
</tr>
</tbody>
</table>
| | To prove that \(T(n) = O(n^2) \) we need to identify the appropriate constants:
| | \[O(g(n)) = \begin{cases} f(n) : & \text{there exists positive constants } c \text{ and } n \text{ such that} \\ & 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \end{cases} \] |
| | i.e. some constant \(c \) such that \(T(n) \leq cn^2 \) |
| | \[T(n) = 3T(n/4) + n^2 \] |
| | \[\leq 3c(n/4)^2 + n^2 \] |
| | \[= cn^2 \frac{3}{16} + n^2 \] |
| | \[= cn^2 - cn^2 \times \frac{13}{16} + n^2 \] |
| | residual |
| | a constant exists if, if \(-cn^2 \times \frac{13}{16} + n^2 \leq 0 \) |
| 30 | Total cost |
| | \[T(n) = 3T(n/4) + n^2 \] |
| | To prove that \(T(n) = O(n^2) \) we need to identify the appropriate constants:
| | \[O(g(n)) = \begin{cases} f(n) : & \text{there exists positive constants } c \text{ and } n \text{ such that} \\ & 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \end{cases} \] |
| | i.e. some constant \(c \) such that \(T(n) \leq cn^2 \) |
| | \[T(n) = 3T(n/4) + n^2 \] |
| | \[\leq 3c(n/4)^2 + n^2 \] |
| | \[= cn^2 \frac{3}{16} + n^2 \] |
| | \[= cn^2 - cn^2 \times \frac{13}{16} + n^2 \] |
| | residual |
| | a constant exists if, if \(-cn^2 \times \frac{13}{16} + n^2 \leq 0 \) |
The appropriate constants:

To prove that $T(n) = O(n^2)$ we need to identify the constants:

$O(g(n)) = \begin{cases} f(n): & \text{there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \\ \end{cases}$

i.e. some constant c such that $T(n) \leq cn^2$

$-c n^2 + n^2 \leq 0$

$-\frac{13}{16} n^2 + n^2 \leq 0$

$c n^2 - \frac{13}{16} n^2 \geq n^2$

$c \geq \frac{16}{13}$

Master Method

Provides solutions to the recurrences of the form:

$T(n) = aT(n/b) + f(n)$

- if $f(n) = O(n^{log_b a - \varepsilon})$ for $\varepsilon > 0$, then $T(n) = \Theta(n^{log_b a})$
- if $f(n) = \Theta(n^{log_b a})$, then $T(n) = \Theta(n^{log_b a} \log n)$
- if $f(n) = \Omega(n^{log_b a + \varepsilon})$ for $\varepsilon > 0$ and $af(n/b) \leq cf(n)$ for $c < 1$
- then $T(n) = \Theta(f(n))$

$T(n) = 3T(n/4) + n^2$

Case 1: $\Omega(n^2)$

- $a = 16$
- $b = 4$
- $f(n) = n$

- is $n = O(n^{2+\varepsilon})$?
- is $n = \Theta(n^{2})$?
- is $n = \Omega(n^{2-\varepsilon})$?

$T(n) = 16T(n/4) + n$

Case 1: $\Theta(n^2)$

- $a = 16$
- $b = 4$
- $f(n) = n$

- $n^{log_b a} = n^{log_4 16} = n^4$

$T(n) = T(n/2) + 2^n$

Case 3?

- $a = 1$
- $b = 2$
- $f(n) = 2^n$

- is $2^n = O(n^{0-\varepsilon})$?
- is $2^n = \Theta(n^{0})$?
- is $2^n = \Omega(n^{0+\varepsilon})$?
\[T(n) = T(n/2) + 2^n \]

- If \(f(n) = O(2^n) \) for \(\epsilon > 0 \), then \(T(n) = \Theta(2^n) \)
- If \(f(n) = \Theta(2^n) \), then \(T(n) = \Theta(2^n \log n) \)
- If \(f(n) = \Omega(2^n) \) for \(\epsilon > 0 \) and \(g(n/b) \leq cf(n) \) for \(c < 1 \) then \(T(n) = \Theta(f(n)) \)

is \(2^{n/2} \leq c2^n \) for \(c < 1 \)?

Let \(c = \frac{1}{2} \)

\[
\begin{align*}
2^{n/2} &\leq (1/2)2^n \\
2^{n/2} &\leq 2^{1/2}2^n \\
2^{n/2} &\leq 2^{1/4}2^n \\
\end{align*}
\]

\[T(n) = \Theta(2^n) \]

\[T(n) = 16T(n/4) + n! \]

- If \(f(n) = O(2^n) \) for \(\epsilon > 0 \), then \(T(n) = \Theta(2^n) \)
- If \(f(n) = \Theta(2^n) \), then \(T(n) = \Theta(2^n \log n) \)
- If \(f(n) = \Omega(2^n) \) for \(\epsilon > 0 \) and \(g(n/b) \leq cf(n) \) for \(c < 1 \) then \(T(n) = \Theta(f(n)) \)

\[
\begin{align*}
a &= 16 \\
b &= 4 \\
f(n) &= n! \\
n_{\log, a} &= n_{\log, 16} \\
&= n^{2} \\
\end{align*}
\]

Case 3?

is \(n! = O(2^{n}) \)?

is \(n! = \Theta(n^{2}) \)?

is \(n! = \Omega(2^{n}) \)?

\[T(n) = 2T(n/2) + n \]

- If \(f(n) = O(2^n) \) for \(\epsilon > 0 \), then \(T(n) = \Theta(2^n) \)
- If \(f(n) = \Theta(2^n) \), then \(T(n) = \Theta(2^n \log n) \)
- If \(f(n) = \Omega(2^n) \) for \(\epsilon > 0 \) and \(g(n/b) \leq cf(n) \) for \(c < 1 \) then \(T(n) = \Theta(f(n)) \)

\[
\begin{align*}
a &= 2 \\
b &= 2 \\
f(n) &= n \\
n_{\log, a} &= n^{\log, 2} \\
&= n \\
\end{align*}
\]

is \(n = O(2^{n/e}) \)?

is \(n = \Theta(n) \)?

is \(n = \Omega(2^{n/e}) \)?

Case 2: \(\Theta(n \log n) \)

\[T(n) = 16T(n/4) + n! \]

- If \(f(n) = O(2^n) \) for \(\epsilon > 0 \), then \(T(n) = \Theta(2^n) \)
- If \(f(n) = \Theta(2^n) \), then \(T(n) = \Theta(2^n \log n) \)
- If \(f(n) = \Omega(2^n) \) for \(\epsilon > 0 \) and \(g(n/b) \leq cf(n) \) for \(c < 1 \) then \(T(n) = \Theta(f(n)) \)

is \(16n/4)! \leq cn! \) for \(c < 1 \)?

Let \(c = 1/2 \)

\[
\begin{align*}
cn! &= 1/2n! \\
&> (n/2)! \\
\end{align*}
\]

therefore,

\[
16(n/4)! \leq (n/2)! < 1/2n! \\
T(n) = \Theta(n!) \\
\]
\[T(n) = \sqrt{2T(n/2)} + \log n \]

if \(f(n) = O(n^{\log_2 a}) \) for \(c > 0 \), then \(T(n) = \Theta(n^{\log_2 a}) \)

if \(f(n) = \Theta(n^{\log_2 a}) \), then \(T(n) = \Theta(n^{\log_2 a} \log n) \)

if \(f(n) = \Omega(n^{\log_2 a}) \) for \(c > 0 \) and \(af(n/b) \leq cf(n) \) for \(c < 1 \)
then \(T(n) = \Theta(f(n)) \)

\[
\begin{align*}
a &= \sqrt{2} \\
b &= 2 \\
f(n) &= \log n
\end{align*}
\]

is \(\log n = O(n^{1/2 - \epsilon}) \)?

is \(\log n = \Theta(n^{1/2}) \)?

is \(\log n = \Omega(n^{1/2 + \epsilon}) \)?

Case 1: \(\Theta(\sqrt{n}) \)

\[T(n) = 4T(n/2) + n \]

if \(f(n) = O(n^{\log_2 a}) \) for \(c > 0 \), then \(T(n) = \Theta(n^{\log_2 a}) \)

if \(f(n) = \Theta(n^{\log_2 a}) \), then \(T(n) = \Theta(n^{\log_2 a} \log n) \)

if \(f(n) = \Omega(n^{\log_2 a}) \) for \(c > 0 \) and \(af(n/b) \leq cf(n) \) for \(c < 1 \)
then \(T(n) = \Theta(f(n)) \)

\[
\begin{align*}
a &= 4 \\
b &= 2 \\
f(n) &= n
\end{align*}
\]

is \(n = O(n^{2 - \epsilon}) \)?

is \(n = \Theta(n^2) \)?

is \(n = \Omega(n^{2 + \epsilon}) \)?

Case 1: \(\Theta(n^2) \)

Recurrences

\[
\begin{align*}
T(n) &= 2T(n/3) + d \\
T(n) &= 7T(n/7) + n
\end{align*}
\]

if \(f(n) = O(n^{\log_2 a}) \) for \(c > 0 \), then \(T(n) = \Theta(n^{\log_2 a}) \)

if \(f(n) = \Theta(n^{\log_2 a}) \), then \(T(n) = \Theta(n^{\log_2 a} \log n) \)

if \(f(n) = \Omega(n^{\log_2 a}) \) for \(c > 0 \) and \(af(n/b) \leq cf(n) \) for \(c < 1 \)
then \(T(n) = \Theta(f(n)) \)

\[
T(n) = T(n-1) + \log n \quad T(n) = 8T(n/2) + n^3
\]

Why does the master method work?

\[T(n) = aT(n/b) + f(n) \]

\[
\begin{align*}
a &= \log_2 a \\
b &= \log_b n \\
f(n) &= \begin{cases} f(n/b) & \text{if } n \geq b^\alpha f(n/b^\beta) & \text{if } n \geq b^\alpha f(n/b^\gamma) & \text{if } n \geq b^\alpha \end{cases}
\end{align*}
\]
What is the depth of the tree?

At each level, the size of the data is divided by b

$$\frac{n}{b} = 1$$
$$\log \left(\frac{n}{b} \right) = 0$$
$$\log n - \log b^d = 0$$
$$d \log b = \log n$$
$$d = \log_b n$$

How many leaves?

How many leaves are there in a complete a-ary tree of depth d?

$$a^d = a^{\log_b n}$$
$$= n^{\log_a a}$$

Total cost

$$T(n) = cf(n) + a'f(n/b) + a^2f(n/b^2) + ... + a^{d-1}f(n/b^{d-1}) + \Theta(a^{d-1})$$

Case 1: cost is dominated by the cost of the leaves

$$= \sum_{k=0}^{d-1} a^k f(n/b^k) < \Theta(a^{d-1})$$

Case 2: cost is evenly distributed across tree

As we saw with mergesort, $\log n$ levels to the tree and at each level $f(n)$ work
Total cost

if \(f(n) = \Theta(n^{\log a}) \) \(\text{for } c > 0 \), then \(T(n) = \Theta(n^{\log a}) \)
if \(f(n) = \Theta(n^{\log a}) \), then \(T(n) = \Theta(n^{\log a} \log n) \)
if \(f(n) = \Theta(n^{\log a}) \) \(\text{for } c > 0 \) and \(af(n/b) \leq cf(n) \) \(\text{for } c < 1 \)
then \(T(n) = \Theta(f(n)) \)

\[
T(n) = cf(n) + af(n/b) + a^2 f(n/b^2) + \cdots + a^{d-1} f(n/b^{d-1}) + \Theta(n^{\log a})
\]

\[
= \sum_{i=0}^{d-1} a^i f(n/b^i) + \Theta(n^{\log a})
\]

Case 3: cost is dominated by the cost of the root

Other forms of the master method

\[
T(n) = aT(n/b) + O(n^d)
\]

\[
T(n) = \begin{cases}
O(n^d) & \text{if } d > \log_a a \\
O(n^{d \log n}) & \text{if } d = \log_a a \\
O(n^{d \log_a d}) & \text{if } d < \log_a a
\end{cases}
\]