Admin

Final
- posted on Gradescope
- due Wednesday (4/10) at 11:59pm (seniors: 4/4 at noon)
- time-limited (3 hours – with some flexibility to scan, etc.)
- You may use:
 - the book
 - your notes
 - the class notes
 - the assignments
 - ONLY these things
- Do NOT discuss it with anyone until after Wednesday at 11:59pm

Test taking advice
- Read the questions carefully!
- Don’t spend too much time on any problem
 - if you get stuck, move on and come back
- When you finish answering a question, reread the question
 and make sure that you answered everything the question
 asked
- Think about how you might be able to reuse an existing
 algorithm/approach
- Show your work (I can’t give you partial credit if I can’t
 figure out what went wrong)
- Don’t rely on the book/notes for conceptual things
 - Do rely on the notes for a run-time you may not remember, etc.

High-level approaches

Algorithm tools
- Divide and conquer
 - assume that we have a solver, but that can only solve sub-
 problems
 - define the current problem with respect to smaller problems
 - Key: sub-problems should be non-overlapping
- Dynamic programming
 - Same as above
 - Key difference: sub-problems are overlapping
 - Once you have this recursive relationship:
 - figure out the data structure to store sub-problem solutions
 - work from bottom up (or memoize)
High-level approaches

Algorithm tools cont.
- Greedy
 - Same idea: most greedy problems can be solved using dynamic programming (but generally slower)
 - Key difference: Can decide between overlapping sub-problems without having to calculate them (i.e. we can make a local decision)
- Flow
 - Min-capacity cut
 - Bottleneck edge
 - Matching problems
- Numerical maximization/minimization problems
- Linear programming (very light coverage)

Data structures

A data structure
- Stores data
- Supports access to/questions about data efficiently
- No single best data structure
 - The different bias towards different actions
 - Fast access/lookup?
 - If keys are sequential: array
 - If keys are non-sequential or non-numerical: hashtable
 - Guaranteed run-time/ordered: balanced binary search tree

Data structures

Min/max?
- Heap
- Binomial heaps
Fast insert/delete at positions?
- Linked list
Others
- Stacks/queues
- Extensible data structures
- Balanced BSTs
- Disjoint sets

Graphs

Graph types
- Directed/undirected
- Weighted/unweighted
- Trees, DAGs
- Cyclic
- Connected
Algorithms
- Connectedness
- Contains a cycle
- Traversal
 - DFS
 - BFS
Graphs

Graph algorithms cont.
- minimum spanning trees (Prim’s, Kruskal’s)
- shortest paths
 - single source (BFS, Dijkstra’s, Bellman-Ford)
 - all pairs (Johnson’s, Floyd-Warshall)
- topological sort
- flow

Other topics...

Analysis tools
- recurrences (master method, recurrence trees)
- big-O
- amortized analysis

NP-completeness
- proving NP-completeness
- reductions

Proofs: general

Be clear and concise

Make sure you state assumptions and justify each step

Make sure when you’re done you’ve shown what you need to show

Proof by induction

1. State what you’re trying to prove
 We show that XXX using proof by induction
2. Prove base case
3. State the inductive hypothesis
4. Inductive proof
 a. State what you want to show (may include a variable change, e.g., k in instead of n)
 b. Show a step by step derivation from the left hand side resulting in the right hand side. Give justifications for steps that are non-trivial
Prof by induction: structural

0 points A full binary tree is a tree where every node is either a leaf or has two children. (Note this is different than a complete binary tree where all levels are full.)

Prove using induction that in a full binary tree the number of internal nodes, \(I \), is equal to the number of leaves, \(L \), minus 1, i.e., \(I = L - 1 \).

1. State what you’re trying to prove
 We show that XXX using proof by induction
2. Prove base case
3. State the inductive hypothesis
4. Inductive proof
 a. State what you want to show (may include a variable change, e.g., \(k \) in place of \(n \))
 b. Show a step by step derivation from the left hand side resulting in the right hand side. Give justifications for steps that are non-trivial

Other (important) places we saw proofs

- Recurrences (substitution method)
- Big O (needed find constants \(c \) \(n_0 \))
- Greedy algorithm correctness (proof by contradicion or stays ahead—induction —)
- Proof of algorithm correctness (MSTs, Flow)
- NP-completeness (proving correctness of reductions)

Recurrences

Three ways to solve:
- Substitution
- Recurrence tree (may still have to use substitution to verify)
- Master method

Recurrences

\[
T(n) = 2T(n/3) + d
\]

\[
T(n) = aT(n/b) + f(n)
\]

- if \(f(n) = \Omega(n^{\log_b a+\epsilon}) \) for \(\epsilon > 0 \), then \(T(n) = \Theta(n^{\log_b a}) \)
- if \(f(n) = \Theta(n^{\log_b a}) \), then \(T(n) = \Theta(n^{\log_b a} \log n) \)
- if \(f(n) = O(n^{\log_b a-\epsilon}) \) for \(\epsilon > 0 \) and \(af(n/b) \leq cf(n) \) for \(c < 1 \)
 then \(T(n) = \Theta(f(n)) \)

\[
T(n) = T(n-1) + \log n
\]
Dynamic programming

Method for solving problems where optimal solutions can be defined in terms of optimal solutions to subproblems

AND

the subproblems are overlapping

Local decisions result in different subproblems. Not obvious how to make the first choice.

DP advice

Write the recursive definition
- What is the input/output to the problem?
- What would a solution look like? What are the options for picking the first component of a solution?
- Assume you have a solver for subproblems. How can you combine the first decision with answer to subproblem.

Define DP structure: what are subproblems indexed by?

State how to fill in the table (including base cases and where the answer is)

All-pairs shortest paths

V * Bellman-Ford: $O(V^2E)$

Floyd-Warshall: $O(V^3)$

Johnson’s: $O(V^2 \log V + V E)$

Floyd-Warshall: Recursive relationship

$d_{ij}^k = \text{shortest path from vertex } i \text{ to vertex } j \text{ using only vertices } \{1, 2, ..., k\}$

Two options:
1) Vertex $k+1$ doesn’t give us a shorter path
2) Vertex $k+1$ does give us a shorter path

$$d_{ij}^{k+1} = \min(d_{ij}^k, d_{i(k+1)}^k + d_{(k+1)j}^k)$$

Pick whichever is shorter
Floyd-Warshall

Calculate d_{ij}^k for increasing k, i.e. $k = 1$ to V

Floyd-Warshall($G = (V, E, W)$):

1. $d^0 = W$ // initialize with edge weights
2. for $k = 1$ to V
 - for $i = 1$ to V
 - for $j = 1$ to V
 - $d_{ij}^k = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})$
3. return d^V

Johnson’s algorithm

Create G' with one extra node s with 0 weight edges to all nodes
run Bellman-Ford(G', s)

if no negative-weight cycle
- reweight edges in G with $h(v)$=shortest path from s to v
 $\hat{w}(u,v) = w(u,v) + h(u) - h(v)$
- run Dijkstra’s from every vertex
- reweight shortest paths based on G

Flow graph/networks

- **Flow network**
 - directed, weighted graph (V, E)
 - positive edge weights indicating the “capacity” (generally, assume integers)
 - contains a single source $s \in V$ with no incoming edges
 - contains a single sink/target $t \in V$ with no outgoing edges
 - every vertex is on a path from s to t

Max flow problem

Given a flow network: what is the maximum flow we can send from s to t that meet the flow constraints?
Network flow properties

If one of these is true then all are true (i.e. each implies the others):

- f is a maximum flow
- G_f (residual graph) has no paths from s to t
- $|f| = \text{minimum capacity cut}$

Application: bipartite graph matching

Bipartite graph – a graph where every vertex can be partitioned into two sets X and Y such that all edges connect a vertex $u \in X$ and a vertex $v \in Y$

Bipartite matching problem: find the largest matching in a bipartite graph

Setup as a flow problem:

- all edge weights are 1
A problem is NP-Complete if
1. It is in NP (verifiable in polynomial time)
2. It is NP-Hard (there exists a polynomial-time reduction from all known NP-Hard problems)
 - (We can show this by showing a reduction from just one NP-Hard problem)

Matching generalized

Matching each thing on this side can match at most s times.

NP-Complete reduction proofs

Allow us to solve P_1 problems if we have a solver for P_2.