Admin

Assignment 9

Assignment 10 (2 weeks assignment) – don’t ignore until next week

Checkpoint 2 next Monday

Checkpoint 2

2 pages of notes

2/20 through 4/10 (will not include network flow)

Will make some practice problems available later this week

Checkpoint 2 topics

- greedy algorithms
- proving correctness
- developing algorithms
- comparing vs. dynamic programming
- hash tables
 - collision resolution by chaining
 - open addressing
 - hash functions
- Dynamic programming
Checkpoint 2 topics

- Graphs
 - Different types of graphs
 - Terminology
 - Representing graphs (adjacency list/matrix)

- Graph algorithms
 - Traversal: BFS, DFS
 - MST: Prim's, Kruskal's
 - Topological sort
 - Connectedness
 - Detecting cycles
 - Single-source shortest paths: Dijkstra's, Bellman-Ford
 - All-pairs shortest paths: Floyd-Warshall, Johnson's
 - Run-time, why the work, when you can apply them

Graph Misc:
- Min-cut property (proving correctness of MST algorithms)

All pairs shortest paths

All pairs shortest paths: calculate the shortest paths between all vertices

Easy solution?

- Run Bellman-Ford from each vertex!

 $O(V^2E)$
 - Bellman-Ford: $O(VE)$
 - V calls, one for each vertex
Floyd-Warshall: key idea

Label all vertices with a number from 1 to \(V \)

\[
d_{ij}^k = \text{shortest path from vertex } i \text{ to vertex } j \\
\text{using only vertices } \{1, 2, \ldots, k\}
\]

What is \(d_{15}^3 \)?

\[
d_{ij}^k = \text{shortest path from vertex } i \text{ to vertex } j \\
\text{using only vertices } \{1, 2, \ldots, k\}
\]

If we want all possibilities, how many values are there
(i.e. what is the size of \(d_{ij}^k \))?
Floyd-Warshall: key idea

Label all vertices with a number from 1 to V

$d_{ij}^k = \text{shortest path from vertex } i \text{ to vertex } j$
using only vertices \{1, 2, ..., k\}

V^3
- i: all vertices
- j: all vertices
- k: all vertices

What is $d_{ij}\ V$?
- Distance of the shortest path from i to j
- If we can calculate this, for all (i, j), we’re done!

Recursive relationship

$d_{ij}^k = \text{shortest path from vertex } i \text{ to vertex } j$
using only vertices \{1, 2, ..., k\}

Assume we know d_{ij}^k

How can we calculate d_{ij}^{k+1}, i.e. shortest path now
including vertex $k+1$? (Hint: in terms of d_{ij}^k)

Two options:
1) Vertex $k+1$ doesn’t give us a shorter path
2) Vertex $k+1$ does give us a shorter path

$d_{ij}^{k+1} =$?
Recursive relationship

\(d_{ij}^k = \text{shortest path from vertex } i \text{ to vertex } j \)
\(\text{using only vertices } \{1, 2, \ldots, k\}\)

Two options:
1) Vertex \(k+1\) doesn't give us a shorter path
2) Vertex \(k+1\) does give us a shorter path

\(d_{ij}^{k+1} = d_{ij}^k\)

Recursive relationship

\(d_{ij}^k = \text{shortest path from vertex } i \text{ to vertex } j \)
\(\text{using only vertices } \{1, 2, \ldots, k\}\)

Two options:
1) Vertex \(k+1\) doesn't give us a shorter path
2) Vertex \(k+1\) does give us a shorter path

\(d_{ij}^{k+1} = ?\)
Recursive relationship

\[d_{ij}^k = \text{shortest path from vertex } i \text{ to vertex } j \]
using only vertices \(\{1, 2, ..., k\} \)

Two options:
1) Vertex \(k+1 \) doesn't give us a shorter path
2) Vertex \(k+1 \) does give us a shorter path

\[d_{ij}^{k+1} = ? \]

How do we combine these two options?

Floyd-Warshall

Calculate \(d_{ij}^k \) for increasing \(k \), i.e. \(k = 1 \) to \(V \)

Floyd-Warshall(G = (V,E,W)):
\[d^0 = W \quad // \text{initialize with edge weights} \]
for \(k = 1 \) to \(V \)
for \(i = 1 \) to \(V \)
for \(j = 1 \) to \(V \)
\[d_{ij}^k = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) \]
return \(d^V \)
Floyd-Warshall(G = (V,E,W)):
\[d^0 = W \] // initialize with edge weights
for \(k = 1 \) to \(V \)
 for \(i = 1 \) to \(V \)
 for \(j = 1 \) to \(V \)
 \[d_{ij}^{k} = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) \]

return \(d^\star \)

\[
\begin{array}{c|ccccc}
 & 1 & 2 & 3 & 4 & 5 \\
\hline
1 & 0 & 4 & -1 & \infty & \infty \\
2 & \infty & 0 & \infty & \infty & 5 \\
3 & \infty & 3 & 0 & 2 & 2 \\
4 & \infty & \infty & 0 & -3 & 4 \\
5 & \infty & \infty & 1 & 0 & 5 \\
\end{array}
\]

\[
\begin{array}{c|ccccc}
 & 1 & 2 & 3 & 4 & 5 \\
\hline
1 & 0 & 4 & -1 & \infty & \infty \\
2 & \infty & 0 & \infty & \infty & 5 \\
3 & \infty & 3 & 0 & 2 & 2 \\
4 & \infty & \infty & 0 & -3 & 4 \\
5 & \infty & \infty & 1 & 0 & 5 \\
\end{array}
\]

minimum

Found a shorter path!
Floyd-Warshall(G = (V,E,W)):
\(d^0 = W \) // initialize with edge weights
for \(k = 1 \) to \(V \)
for \(i = 1 \) to \(V \)
for \(j = 1 \) to \(V \)
\[d_{ij}^{k} = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) \]
return \(d^k \)

<table>
<thead>
<tr>
<th>(k = 2)</th>
<th>(k = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 4 -1 (\infty) 9</td>
<td>1 0 2</td>
</tr>
<tr>
<td>(\infty) 0 (\infty) (\infty) 5</td>
<td>2</td>
</tr>
<tr>
<td>(\infty) 3 0 2 2</td>
<td>3</td>
</tr>
<tr>
<td>(\infty) (\infty) (\infty) 0 -3</td>
<td>4</td>
</tr>
<tr>
<td>(\infty) (\infty) 1 (\infty) 0</td>
<td>5</td>
</tr>
</tbody>
</table>

minimum

\[k = 2 \]
\[k = 3 \]

Floyd-Warshall(G = (V,E,W)):
\(d^0 = W \) // initialize with edge weights
for \(k = 1 \) to \(V \)
for \(i = 1 \) to \(V \)
for \(j = 1 \) to \(V \)
\[d_{ij}^{k} = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) \]
return \(d^k \)

<table>
<thead>
<tr>
<th>(k = 2)</th>
<th>(k = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 4 -1 (\infty) 9</td>
<td>1 0 2</td>
</tr>
<tr>
<td>(\infty) 0 (\infty) (\infty) 5</td>
<td>2</td>
</tr>
<tr>
<td>(\infty) 3 0 2 2</td>
<td>3</td>
</tr>
<tr>
<td>(\infty) (\infty) (\infty) 0 -3</td>
<td>4</td>
</tr>
<tr>
<td>(\infty) (\infty) 1 (\infty) 0</td>
<td>5</td>
</tr>
</tbody>
</table>
Floyd-Warshall (G = (V,E,W)):
\[d_f = W \] // initialize with edge weights
for \(k = 1 \) to \(V \)
 for \(i = 1 \) to \(V \)
 for \(j = 1 \) to \(V \)
 \[d_{ij} = \min(d_{ij}^{k-1}, d_{ik} + d_{kj}^{k-1}) \]

return \(d_f \)

Floyd-Warshall (G = (V,E,W)):
\[d_f = W \] // initialize with edge weights
for \(k = 1 \) to \(V \)
 for \(i = 1 \) to \(V \)
 for \(j = 1 \) to \(V \)
 \[d_{ij} = \min(d_{ij}^{k-1}, d_{ik} + d_{kj}^{k-1}) \]

return \(d_f \)

Floyd-Warshall (G = (V,E,W)):
\[d_f = W \] // initialize with edge weights
for \(k = 1 \) to \(V \)
 for \(i = 1 \) to \(V \)
 for \(j = 1 \) to \(V \)
 \[d_{ij} = \min(d_{ij}^{k-1}, d_{ik} + d_{kj}^{k-1}) \]

return \(d_f \)

Floyd-Warshall (G = (V,E,W)):
\[d_f = W \] // initialize with edge weights
for \(k = 1 \) to \(V \)
 for \(i = 1 \) to \(V \)
 for \(j = 1 \) to \(V \)
 \[d_{ij} = \min(d_{ij}^{k-1}, d_{ik} + d_{kj}^{k-1}) \]

return \(d_f \)
For Floyd Warshall(G = (V,E,W)),
\[d^0 = W \] // initialize with edge weights
for \(k = 1 \) to \(V \)
for \(i = 1 \) to \(V \)
for \(j = 1 \) to \(V \)
\[d_{ij} = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) \]
return \(d^k \)

For Floyd Warshall(G = (V,E,W)),
\[d^0 = W \] // initialize with edge weights
for \(k = 1 \) to \(V \)
for \(i = 1 \) to \(V \)
for \(j = 1 \) to \(V \)
\[d_{ij} = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) \]
return \(d^k \)

Found a shorter path!
Floyd-Warshall analysis

Is it correct?

Floyd-Warshall(G = (V,E,W)):
\[d^0 = W \quad // \text{initialize with edge weights} \]
for \(k = 1 \) to \(V \)
for \(i = 1 \) to \(V \)
for \(j = 1 \) to \(V \)
\[d_{ij} = \min(d_{ij}, d_{ik}^{k-1} + d_{kj}^{k-1}) \]
return \(d^0 \)

Any assumptions?

Floyd-Warshall(G = (V,E,W)):
\[d^0 = W \quad // \text{initialize with edge weights} \]
for \(k = 1 \) to \(V \)
for \(i = 1 \) to \(V \)
for \(j = 1 \) to \(V \)
\[d_{ij} = \min(d_{ij}, d_{ik}^{k-1} + d_{kj}^{k-1}) \]
return \(d^0 \)
Floyd-Warshall analysis

Is it correct?
Assuming the graph has no negative cycles!
What happens if there is a negative cycle?

Floyd-Warshall \(G = (V,E,W)\):
\[
d^0 = W \quad // \text{initialize with edge weights}
\]
for \(k = 1\) to \(V\)
for \(i = 1\) to \(V\)
for \(j = 1\) to \(V\)
\[
d_{ij}^k = \min(d_{ij}^{k-1}, d_{iw}^{k-1} + d_{wj}^{k-1})
\]
return \(d^V\)

Floyd-Warshall analysis

If the graph has a negative weight cycle, at the end, at least one of the diagonal entries will be a negative number, i.e., we there's a way to get back to a vertex using all of the vertices that results in a negative weight

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
0 & 2 & -1 & 1 & -2 \\
\infty & 0 & 7 & 9 & 5 \\
\infty & 3 & 0 & 2 & -1 \\
\infty & 1 & -2 & 0 & -3 \\
\infty & \infty & 1 & \infty & 0
\end{array}
\]

Floyd-Warshall analysis

Run-time:

\[
\theta(V^3)
\]

Floyd-Warshall analysis

Run-time?

Floyd-Warshall \(G = (V,E,W)\):
\[
d^0 = W \quad // \text{initialize with edge weights}
\]
for \(k = 1\) to \(V\)
for \(i = 1\) to \(V\)
for \(j = 1\) to \(V\)
\[
d_{ij}^k = \min(d_{ij}^{k-1}, d_{iw}^{k-1} + d_{wj}^{k-1})
\]
return \(d^V\)
Floyd-Warshall analysis

What type of algorithm is Floyd-Warshall?

Floyd-Warshall (G = (V,E,W)):
\[d_0 = W \quad // \text{initialize with edge weights} \]
for \(k = 1 \) to V
for \(i = 1 \) to V
for \(j = 1 \) to V
\[d_{ij}^k = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) \]
return \(d_V \)

Dynamic programming!!
Build up solutions to larger problems using solutions to smaller problems. Use a table to store the values.

Floyd-Warshall (G = (V,E,W)):
\[d_0 = W \quad // \text{initialize with edge weights} \]
for \(k = 1 \) to V
for \(i = 1 \) to V
for \(j = 1 \) to V
\[d_{ij}^k = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) \]
return \(d_V \)

Floyd-Warshall analysis

Space usage?

Floyd-Warshall (G = (V,E,W)):
\[d_0 = W \quad // \text{initialize with edge weights} \]
for \(k = 1 \) to V
for \(i = 1 \) to V
for \(j = 1 \) to V
\[d_{ij}^k = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) \]
return \(d_V \)

Floyd-Warshall: key idea

Label all vertices with a number from 1 to V

\[d_{ij}^k = \text{shortest path from vertex } i \text{ to vertex } j \]
using only vertices \(\{1, 2, \ldots, k\} \)

If we want all possibilities, how many values are there (i.e., what is the size of \(d_V \)?)
Floyd-Warshall: key idea

Label all vertices with a number from 1 to V

\[d_{ij}^k = \text{shortest path from vertex } i \text{ to vertex } j \]
using only vertices \{1, 2, ..., k\}

\(V^3 \)

• i: all vertices
• j: all vertices
• k: all vertices

Can we do better?

Floyd-Warshall analysis

Space usage: \(\Theta(V^2) \)

Only need the current value and the previous

\[
\begin{align*}
\text{Floyd-Warshall}(G = (V, E, W)):
& \quad d^0 \in W \quad // \text{initialize with edge weights} \\
& \quad \text{for } k = 1 \text{ to } V \\
& \quad \quad \text{for } i = 1 \text{ to } V \\
& \quad \quad \quad \text{for } j = 1 \text{ to } V \\
& \quad \quad \quad \quad \text{dijk} = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) \\
& \quad \text{return } d^V
\end{align*}
\]

All pairs shortest paths

V * Bellman-Ford: \(\Theta(V^2E) \)

Floyd-Warshall: \(\Theta(V^3) \)

All pairs shortest paths

All pairs shortest paths for positive weight graphs:
calculate the shortest paths between all points

Easy solution?
All pairs shortest paths

All pairs shortest paths for positive weight graphs: calculate the shortest paths between all points

Run Dijkstra's from each vertex!

Running time (in terms of E and V)?

O(V^2 \log V + V E)

V calls to Dijkstra's

Dijkstra's: O(V \log V + E)

Is this any better?

If the graph is sparse!
All pairs shortest paths

All pairs shortest paths for positive weight graphs:
calculate the shortest paths between all points

Run Dijkstra's from each vertex!

Challenge: Dijkstra's assumes positive weights

Johnson's: key idea

Reweight the graph to make all edges positive such that shortest paths are preserved

What's the shortest path from A to D?

Lemma

Let h be any function mapping a vertex to a real value

If we change the graph weights as:

$$\hat{w}(u, v) = w(u, v) + h(u) - h(v)$$

The shortest paths are preserved

Lemma: proof

$$\hat{w}(u, v) = w(u, v) + h(u) - h(v)$$

The weight in the reweighted graph is:

$$\hat{w}(s, v_1, ... , v_k, t) = w(s, v_1) + h(s) - h(v_1) + \hat{w}(v_1, v_2) + h(v_1) - h(v_2) + \hat{w}(v_2, ... , v_k, t)$$

$$\hat{w}(s, v_1, ... , v_k, t) = w(s, v_1) + h(s) + w(v_1, v_2) + h(v_2) - h(v_1) + \hat{w}(v_2, ... , v_k, t)$$

$$\hat{w}(s, v_1, ... , v_k, t) = w(s, v_1) + h(s) + w(v_1, v_2) + h(v_2) + \hat{w}(v_2, v_3) + h(v_2) - h(v_3) + \hat{w}(v_3, ... , v_k, t)$$

$$\hat{w}(s, v_1, ... , v_k, t) = w(s, v_1) + h(s) + w(v_1, v_2) + w(v_2, v_3) + \hat{w}(v_2, v_3) + h(v_2) + \hat{w}(v_3, ... , v_k, t)$$

$$\hat{w}(s, v_1, ... , v_k, t) = w(s, v_1) + h(s) + w(v_1, v_2) + w(v_2, v_3) + w(v_3, v_k) + \hat{w}(v_3, ... , v_k, t)$$

$$\hat{w}(s, v_1, ... , v_k, t) = w(s, v_1) + h(s) + w(v_1, v_2) + w(v_2, v_3) + w(v_3, v_k) + h(v_3) + \hat{w}(v_3, ... , v_k, t)$$

$$\hat{w}(s, v_1, ... , v_k, t) = w(s, v_1) + h(s) + w(v_1, v_2) + w(v_2, v_3) + w(v_3, v_k) + h(v_3) + \hat{w}(v_3, ... , v_k, t)$$
Lemma: proof

\[\hat{w}(s, v_1, \ldots, v_k, t) = w(s, v_1, \ldots, v_k, t) + h(s) - h(t) \]

Claim: the weight change preserves shortest paths, i.e. if a path was the shortest from \(s \) to \(t \) in the original graph it will still be the shortest path from \(s \) to \(t \) in the new graph.

Justification?

Lemma: proof

\[\hat{w}(s, v_1, \ldots, v_k, t) = w(s, v_1, \ldots, v_k, t) + h(s) - h(t) \]

Claim: the weight change preserves shortest paths, i.e. if a path was the shortest from \(s \) to \(t \) in the original graph it will still be the shortest path from \(s \) to \(t \) in the new graph.

\(h(s) - h(t) \) is a constant and will be the same for all paths from \(s \) to \(t \), so the absolute ordering of all paths from \(s \) to \(t \) will not change.

Lemma

Let \(h \) be any function mapping a vertex to a real value.

If we change the graph weights as:

\[\hat{w}(u, v) = w(u, v) + h(u) - h(v) \]

The shortest paths are preserved

Big question: how do we pick \(h \)?

Selecting \(h \)

Need to pick \(h \) such that the resulting graph has all weights as positive.

\[\hat{w}(u, v) = w(u, v) + h(u) - h(v) \]
Johnson’s algorithm

Create G’ with one extra node s with 0 weight edges to all nodes
run Bellman-Ford(G’, s)

if no negative-weight cycle
 reweight edges in G with h(v) = shortest path from s to v
 run Dijkstra’s from every vertex
 reweight shortest paths based on G

Create G’
run Bellman-Ford(G’, s)
if no negative-weight cycle
 reweight edges in G with h(v) = shortest path from s to v
 run Dijkstra’s from every vertex
 reweight shortest paths based on G
Create G'
run Bellman-Ford(G', s)

if no negative-weight cycle
 reweight edges in G with $h(v) =$ shortest path from s to v
 run Dijkstra's from every vertex
 reweight shortest paths based on G

Create G'
run Bellman-Ford(G', s)

if no negative-weight cycle
 reweight edges in G with $h(v) =$ shortest path from s to v
 run Dijkstra's from every vertex
 reweight shortest paths based on G

19
Create G'
run Bellman-Ford(G',s)
if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra's from every vertex
reweight shortest paths based on G

\[\hat{w}(u, v) = w(u, v) + h(u) - h(v) \]

h(v) in blue

Create G'
run Bellman-Ford(G',s)
if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra's from every vertex
reweight shortest paths based on G

\[\hat{w}(u, v) = w(u, v) + h(u) - h(v) \]

h(v) in blue

Create G'
run Bellman-Ford(G',s)
if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra's from every vertex
reweight shortest paths based on G

\[\hat{w}(u, v) = w(u, v) + h(u) - h(v) \]

h(v) in blue

Create G'
run Bellman-Ford(G',s)
if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra's from every vertex
reweight shortest paths based on G

\[\hat{w}(u, v) = w(u, v) + h(u) - h(v) \]

h(v) in blue
Create G'
run Bellman-Ford(G', s)
if no negative-weight cycle
 reweight edges in G with $h(v)$ = shortest path from s to v
 run Dijkstra's from every vertex
 reweight shortest paths based on G

$\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

$h(v)$ in blue

Create G'
run Bellman-Ford(G', s)
if no negative-weight cycle
 reweight edges in G with $h(v)$ = shortest path from s to v
 run Dijkstra's from every vertex
 reweight shortest paths based on G

$\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

$h(v)$ in blue
\(\hat{w}(u, v) = w(u, v) + h(u) - h(v)\)

Create \(G'\)
run Bellman-Ford\((G', s)\)
if no negative-weight cycle
 reweight edges in \(G\) with \(h(v)\)\text{\shortestpath} from \(s\) to \(v\)
run Dijkstra’s from every vertex
reweight shortest paths based on \(G\)

85

86

87

88
Selecting \(h \)

Need to pick \(h \) such that the resulting graph has all weights as positive.

1. Create \(G' \) with one extra node \(s \) with 0 weight edges to all nodes.
2. Run Bellman-Ford\((G',s)\).
3. If no negative-weight cycle,
 - Reweight edges in \(G \) with \(h(v) = \) shortest path from \(s \) to \(v \).
 - Run Dijkstra’s from every vertex.
 - Reweight shortest paths based on \(G \).

Why does this work (i.e., how do we guarantee that reweighted graph has only positive edges)?

Reweighted graph is positive

Take two nodes \(u \) and \(v \).

\(h(u) \) shortest distance from \(s \) to \(u \)
\(h(v) \) shortest distance from \(s \) to \(v \)

Claim: \(h(v) \leq h(u) + w(u,v) \)

Why?

Reweighted graph is positive

Take two nodes \(u \) and \(v \).

\(h(u) \) shortest distance from \(s \) to \(u \)
\(h(v) \) shortest distance from \(s \) to \(v \)

Claim: \(h(v) \leq h(u) + w(u,v) \)

If this weren’t true, we could have made a shorter path \(s \) to \(v \) using \(u \)

… but this is in contradiction with how we defined \(h(v) \).
Reweighted graph is positive

Take two nodes u and v

$h(u)$ shortest distance from s to u

$h(v)$ shortest distance from s to v

$h(v) \leq h(u) + w(u,v)$

$w(u,v) + h(u) - h(v) \geq 0$

What is this?

Johnson's algorithm

Create G'

run Bellman-Ford(G', s)

if no negative-weight cycle

reweight edges in G

run Dijkstra's from every vertex

reweight shortest paths based on G

Run-time?

$\theta(V)$

$O(V^2)$

$\theta(E)$

$O(V^2 \log V + VE)$

$\theta(E)$

Run-time?
All pairs shortest paths

- **Bellman-Ford**: $O(V^2 E)$
- **Floyd-Warshall**: $\Theta(V^3)$
- **Johnson's**: $O(V^2 \log V + V E)$