Show that Clique is NP-Complete. (Given a graph G does the graph have a clique of size k.)

1. Clique is in NP.
 A solution for click is a set of vertices $V' \subseteq V$. Check the following:
 - Check that $|V'| = k$
 - For each pair of vertices $u, v \in V'$ check that $(u, v) \in E$.

 There are $O(V^2)$ checks and each check is $O(V)$, so the overall run-time is $O(V^3)$.

2. To show that Clique is NP-Hard we show: Independent-Set \leq_p Clique.
 (We're assuming Independent-Set is NP-Complete.)
 - Reduction: given an instance $\langle G, k \rangle$ of Independent-Set, we transform it into an instance of Clique, $\langle G', k' \rangle$, as follows:
 - Let $V' = V$, i.e., copy all of the vertices.
 - For all pairs of vertices $u, v \in V$, if $(u, v) \notin E$, add an edge (u, v) to G', i.e., E' will consist of all the edges not in G.
 - Set $k' = k$.
 - Reduction in polynomial time: The reduction takes time $O(V^2)$ to create $\langle G', k' \rangle$, which is polynomial wrt the original problem instance.
 - “yes” \leftrightarrow “yes”
 - “yes” for Independent-Set \rightarrow “yes” for Clique
 A “yes” for Independent-Set means that there are k vertices in G such where no edge exists between these vertices. In G' these vertices will therefore be fully connected forming a clique of size k.
 - “yes” for Clique \rightarrow “yes” for Independent-Set
 A “yes” for Clique means there is a clique of size k in G'. In G these vertices will not have any edges between them, so they will represent an independent set.