1. [7.5 points] T/F - State whether the statements below are true or false \textbf{AND} give a \textit{brief} justification for your answer.

- \[2^{c\sqrt{n}} = O(2^{\sqrt{n}}) \text{ for any constant } c > 0 \]

- \[f(n) + g(n) = O(\max(f(n), g(n))) \text{ assuming } f(n) \text{ and } g(n) \text{ are positive functions.} \]

- You are given two algorithms A_1 and A_2 for solving a problem. A_1 runs in time $O(n^3)$ and A_2 runs in time $O(\log n)$. It is possible for A_1 to take less time to run than A_2 on all possible inputs.

- A k-sorted array is an array where any value is no more than k positions from it’s correct location. The worst case running time of Insertion-Sort on a k-sorted array is $O(n^2)$.

- If f is $O(g)$, then 2^f is $O(2^g)$.
2. **[6 points]** You’re given an array of \(n \) elements and would like to print the \(k \) largest in sorted, *decreasing* order. For example, if \(n = 8 \) and \(k = 3 \) and the input were:

\[
8 \ 10 \ 2 \ 1 \ 4 \ 6 \ 2 \ 15
\]

Then the output would be: \(15 \ 10 \ 8 \)

For each of the methods below, describe the *most efficient*, worst-case run-time for the method described. Note your run-times should be in terms of \(n \) and \(k \).

(a) Sort all \(n \) numbers and then print the largest \(k \).

(b) Find the largest value. Remove it from the array and print it. Repeat until you’ve found the \(k \) largest values.

(c) Find the \(k \)th largest number, partition around it, then sort the \(k \) largest numbers.

3. **[6 points]** Suppose you are given an array \(A[1...n] \) of sorted integers that has been rotated \(k \) positions to the right. For example, \([35, 42, 5, 15, 27, 29]\) is a sorted array that has been circularly rotated \(k = 2 \) positions, while \([27, 29, 35, 42, 5, 15]\) has been rotated \(k = 4 \) positions. Describe an algorithm to find the largest value in a \(k \)-shifted array in \(O(\log n) \) time.
4. [6 points] If possible, solve the following recurrences and prove that your answer is correct (using the master method is fine as proof):

 (a) \(T(n) = 3T(\frac{n}{3}) + \log n \)

 (b) \(T(n) = T(n - 1) + n^d \log n, \text{ for } d \geq 1 \)