1. [7.5 points] T/F - State whether the statements below are true or false AND give a brief justification for your answer.

_____ $2^{c\sqrt{n}} = O(2^{\sqrt{n}})$ for any constant $c > 0$

_____ $f(n) + g(n) = O(\max(f(n), g(n)))$ assuming $f(n)$ and $g(n)$ are positive functions.

_____ You are given two algorithms A_1 and A_2 for solving a problem. A_1 runs in time $O(n^3)$ and A_2 runs in time $O(\log n)$. It is possible for A_1 to take less time to run than A_2 on all possible inputs.

_____ A k-sorted array is an array where any value is no more than k positions from its correct location. The worst case running time of Insertion-Sort on a k-sorted array is $O(n^2)$.

_____ If f is $O(g)$, then 2^f is $O(2^g)$
2. **[6 points]** You’re given an array of n elements and would like to print the k largest in sorted, *decreasing* order. For example, if $n = 8$ and $k = 3$ and the input were:

$$8 \ 10 \ 2 \ 1 \ 4 \ 6 \ 2 \ 15$$

Then the output would be: 15 10 8

For each of the methods below, describe the *most efficient*, worst-case run-time for the method described. Note your run-times should be in terms of n and k.

(a) Sort all n numbers and then print the largest k.

(b) Find the largest value. Remove it from the array and print it. Repeat until you’ve found the k largest values.

(c) Find the kth largest number, partition around it, then sort the k largest numbers.

3. **[6 points]** Suppose you are given an array $A[1...n]$ of sorted integers that has been rotated k positions to the right. For example, $[35, 42, 5, 15, 27, 29]$ is a sorted array that has been circularly rotated $k = 2$ positions, while $[27, 29, 35, 42, 5, 15]$ has been rotated $k = 4$ positions. Describe an algorithm to find the largest value in a k-shifted array in $O(\log n)$ time.
4. [6 points] If possible, solve the following recurrences and prove that your answer is correct (using the master method is fine as proof):

(a) \(T(n) = 3T\left(\frac{n}{3}\right) + \log n \)

(b) \(T(n) = T(n - 1) + n^d \log n, \text{ for } d \geq 1 \)