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Algorithms, Assignment 07: Complexity Classification 
 

1. For the Satisfiability Problem (SAT), you are given a Boolean expression and then asked if there 
is an assignment of true and false values to the variables that lead to the expression evaluating 
to true. 

 
Example Boolean expressions: 

𝑤⋀�̅� : cannot be satisfied 

(𝑥⋁𝑦)⋀(�̅�⋁𝑦) : satisfied by 𝑥 = 𝑦 

𝑎⋀((𝑏⋁𝑐̅)⋀𝑑)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  : satisfied by 𝑎 = 𝑇, 𝑑 = 𝐹 
 

3-CNF-SAT (sometimes called 3SAT and CNF means conjunctive normal form) is a particular type 
of Boolean expression that looks like this: 

(𝑥1 ∨ 𝑥2̅̅ ̅ ∨ 𝑥4̅̅ ̅) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥5) ∧ (𝑥1 ∨ 𝑥4 ∨ 𝑥6̅̅ ̅) 
 

In 3-CNF-SAT we have some number of clauses (enclosed in parentheses), each clause has three 
literals OR’d together, and the clauses are AND’d together. 
 
The 3-CNF-SAT problem can be stated as: given an expression in the 3-CNF form, is there an 
assignment of literals that makes the expression evaluate to true. 
 
3-CNF-SAT is NP-Complete. 
 

a. Describe an algorithm for verifying a solution (an assignment of the literals) of a 3-CNF 
expression and state the running time of the verification algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 

b. Does 3-CNF-SAT belong to the class P? 

c. Does 3-CNF-SAT belong to the class NP? 

d. Is 3-CNF-SAT NP-Hard? 
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2. A graph clique is a completely connected subcomponent of a graph. That is, every vertex in a 
clique has an edge connecting it to every other vertex in the clique. 

 
A simple question to ask is: given a graph G, what is the size of its largest clique? 

 
a. Write a decision version of the above question. 

b. The decision version of the clique problem is in NP. Given an algorithm for verifying a 
solution to the problem. 

c. The decision version of the clique problem is NP-Hard. Describe the process of proving 
that clique is in fact NP-Hard by stating a reduction involving the clique and 3-CNF-SAT 
problems. You do not need to show the transformation process, just state the reduction 
process at a high-level: 

i. The direction of the reduction (what is being reduced to what). 
ii. What the reduction implies. 
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d. (Bonus) Describe the transformation needed to complete part (c). You should spend 
some time thinking about this first, but then I’d recommend stepping through this 
animation one slide at a time—after each slide you should attempt to complete the 
process yourself. 

  

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/threeSAT_to_clique.html
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/threeSAT_to_clique.html
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3. The graph partitioning problem is NP-Complete. Graph partitioning… 
 

a. … can be solved with a polynomial time algorithm. 
 
 True False Probably False (but maybe True) 
 

b. … is in NP 
 
 True False Probably False (but maybe True) 
 

c. … is NP-Hard. 
 
 True False Probably False (but maybe True) 
 

d. … can be reduced to the clique problem. 
 
 True False Probably False (but maybe True) 
 

e. … can be reduced to a breadth-first search. 
 
 True False Probably False (but maybe True) 
 

f. … can have its decision variant verified in polynomial time. 
 
 True False Probably False (but maybe True) 
 

g. … can have the 3-CNF-SAT problem reduced to it. 
 
 True False Probably False (but maybe True) 
 

h. … can have the shortest path problem reduced to it. 
 
 True False Probably False (but maybe True) 
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4. Consider these two problems: 

PRIME = {⟨𝑥 | 𝑥 ≥ 2⟩ : 𝑥 is a prime number} 

NOT-PRIME = {⟨𝑥 | 𝑥 ≥ 2⟩ : 𝑥 is not a prime number} 

The notation above is a common for denoting problems when discussing computational 
complexity. You can read them as: 

“PROBLEM NAME” = {⟨”Problem Input”⟩ : “Decision being made”} 

Here is one more example: 

MST-K = {⟨𝐺, 𝑘⟩ : 𝐺 has a minimum spanning tree with a total cost ≤ 𝑘} 

“The MST-K decision problem states that for a given graph G and an input K we must output 
whether or not (yes or no) G has a minimum spanning tree (MST) with a total cost less than or 
equal to k.” 

 
In a 2004 paper, Agrawal, Kayal, and Saxena proved that PRIME ∈ 𝑃. This denotes that the PRIME 
problem belongs to the set P (it can be solved in polynomial time). 
 
Answer true or false and justify answers to the following statements: 

 
a. PRIME ∈ 𝑃 

b. NOT-PRIME ∈ 𝑃 

c. PRIME ≤𝑝 CLIQUE (the PRIME problem can be reduced to the CLIQUE problem) 

d. CLIQUE ≤𝑝 PRIME (the CLIQUE problem can be reduced to the PRIME problem) 


