
Name(s) ____________________________________ ___

Algorithms, Assignment 06: Dynamic Programming

1. Consider the Two-Dimensional Jump-It problem from the assignment description.

a. Describe, in plain English, how the Two-Dimensional Jump-It problem exhibits
overlapping subproblems.

b. Describe, in plain English, how the Two-Dimensional Jump-It problem exhibits optimal
substructure.

Name(s) ____________________________________ ___

2. Consider the Knapsack Problem and these values:

 ITEM 1 ITEM 2 ITEM 3 ITEM 4

WEIGHT 10 20 35 50

VALUE 60 70 120 180

a. We discussed the 0-1 Knapsack Problem in class, but there is also a version known as

Fractional Knapsack. In Fractional Knapsack, you are allowed to break items into any
fractional amount.

i. Describe an optimal greedy algorithm for Fractional Knapsack.

ii. Provide the output of your greedy algorithm for the table above when the
Knapsack capacity is 55.

b. Provide the output (optimal value, not the table) of our dynamic programming
algorithm for the 0-1 Knapsack Problem and the table above when the Knapsack
capacity is 55.

Name(s) ____________________________________ ___

c. Provide a proof of correctness for the 0-1 Knapsack Algorithm that we discussed in class.

Name(s) ____________________________________ ___

3. In the previous assignment we discussed a solution to the problem of handing back change in US
coinage. A greedy solution to that problem worked because the US coin system is “canonical.”
Now consider a non-canonical change system with coins of values.

For example, if the coins are from the set {1, 5, 6, 9} and the change to hand back is 11, our
greedy solution would return one 9 and two 1s instead of the optimal solution of one 5 and
one 6.

For this problem you will give a dynamic programming algorithm for making change using any
coin system with values: v1 < v2 < … < vn (all integers), where v1 = 1.

a. Describe a table to be filled in by a dynamic programming solution to this problem.

What are the values in the table and what are its dimensions?

b. Write a recursive definition for the function that defines the values in the table.

c. What is the running time of filling in the table?

d. Show the table if v1=1, v2=5, and v3=6, and the amount of change to return is 10.

Name(s) ____________________________________ ___

4. Arbitrage is a money-making scheme involving anomalies in international currency exchange
rates. For example, imagine that 1 U.S. dollar buys 0.8 Zambian kwachas, 1 Zambian kwacha
buys 10 Mongolian tughriks, and 1 Mongolian tughrik buys 0.15 U.S. dollars.

A trader can start with 1 U.S. dollar and buy 0.8 × 10 × 0.15 = 1.2 U.S. dollars. Large amounts
of money can be made by capitalizing on such anomalies before they're detected and corrected
by the markets.

Assume that we're given 𝑛 currencies 𝑐1,… , 𝑐𝑛 and the exchange rate between every pair of
currencies; that is, 𝑐𝑖 buys 𝑅[𝑖, 𝑗] units of currency 𝑐𝑗. Also assume that there are no cycles that

enable you to get arbitrarily rich.

Objective: describe an algorithm for computing the maximum amount of currency that you can
obtain by starting with 1 unit of that currency (for all currencies). For full credit, make sure that
your algorithm is as fast as possible.

Hint: log𝑏(𝑐𝑖 ⋅ 𝑐𝑖+1 ⋅ … ⋅ 𝑐𝑗) = log𝑏 𝑐𝑖 + log𝑏 𝑐𝑖+1 +⋯+ log𝑏 𝑐𝑗

(Summing the logs of numbers is equivalent to the log of the product of those same numbers.)

