
Name(s) ____________________________________  _________________________________________  

Algorithms, Assignment 2: Master Method, Recursion Trees, and Quicksort 
 

def mergesort3(a): 
    # I am using m here as a reminder that this  
    # changes at each recursive call 
    m = len(a) 
    if m <= 1: 
        return a 
 
    mid1 = 1 * m // 3 
    mid2 = 2 * m // 3 
 
    left   = mergesort3(a[    0:mid1 ]) 
    middle = mergesort3(a[ mid1:mid2 ]) 
    right  = mergesort3(a[ mid2:m    ]) 
 
    # merge3: T(m) <= 12m + 8 
    return merge3(left, middle, right) 

 

1. The easy way: use the Master Method to get the asymptotic running time of mergesort3. 
 

(a) What are the values for a, b, and d? 
 
 a =  _________  b =  _________  d =  _________  
 

(b) Write a recurrence equation for mergesort3: 
 
 

𝑇(𝑛) ≤   _______________________________  
 

(c) What is the Master Method case (circle the answer)? 
 
 Case 1 Case 2 Case 3 
 

(d) What is the asymptotic upper running time in Big-O notation? 
 
 

𝑇(𝑛) =   _______________________________  
 
  



2. The hard way: perform a recursion tree analysis to get the asymptotic running time of 
mergesort3. 

 
(a) Draw a picture of the recursion tree for n=27 (sorting 27 items with mergesort3). 

(b) As a function of L, how many sub-problems are there at any given level? Here, each sub-
problem refers to a call to the merge3 function. 
Note1: the root is Level 0, the second level is Level 1, and leaves are at Level log3(n). 

(c) As a function of L, how many elements are there for a given sub-problem (call to 
merge3) found in level L? 

(d) As a function of L, how much work is performed at a given level L? This equation will be 
based on your answers to parts (b) and (c). 



(e) What is the total running time of mergesort3? 

(f) What is the asymptotic upper running time of mergesort3? 

(g) Referring to the previous question, prove that your answer to part (e) is upper bounded 
by your answer to part (f). This is a Big-O proof.  



3. What is the asymptotic upper running time of a function with the following recurrence? 
 

𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑛 
 

Although the master method will not work for this recurrence, you can still perform a recursion 
tree analysis! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Consider the following problem: You want to compute the longest consecutive number of days in 
which the stock’s value did not decrease.  

For example: 

Day 1 2 3 4 5 6 7 8 
Value 42 40 45 45 44 43 50 49 

In this table, the longest consecutive non-decreasing run is 3. From day 2 through day 4. 
 
A naïve solution to this problem is to look at the longest run starting at each day. This would 

require a 𝑂(𝑛2) algorithm, as we have 𝑛 days each with a potential 𝑂(𝑛) run. 
 
Although there are iterative algorithms for solving this problem, your task is to design and 
describe a divide-and-conquer algorithm. (Write answers on the next page.) 



(a) Provide high-level pseudocode for your algorithm. Only provide pseudocode for the 
recursive function and not for the “combine/merge” operation (similar to how I did not 
provide an implementation for merge3 in problem 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Write a recurrence for your algorithm: 
 
 

𝑇(𝑛) ≤   _______________________________  
 

(c) What is the asymptotic upper running time in Big-O notation? 
 
 

𝑇(𝑛) =   _______________________________  
 
  



5. Consider the following array: 
 

61 11 37 47 59 23 73 83 101 97 

 
(a) For this question only: assume that the array above was returned by a call to partition. 

Circles all numbers in the already partitioned array that could have been the pivot. 

(b) What is the probability that the numbers “59” and “23” are compared in a call to 
quicksort that selects pivots at random? 

(c) Is the probability from 3(b) greater than, less than, or equal to the probability that the 
numbers “61” and “11” are compared? 

 
 Greater Than Less Than Equal To 
 

(d) How many comparisons would you expect to be performed by Quicksort if we are lucky 
and always pick the median element as the pivot? You only need to consider the case 
when n = 10? You can draw a recursion tree to help you count. 

(e) How many comparisons would you expect to be performed by Quicksort if we are 
unlucky and we always pick the minimum or maximum element as the pivot. Consider 
the case when n = 10. You can draw a recursion tree to help you count. 

  



6. Consider the following code, where the roll_single_die function has an equal chance of 
returning 1, 2, 3, 4, 5, or 6. 

 
total = 0 
for _ in range(10): 
    die_value = roll_single_die() 
    if die_value == 2 or die_value == 3: 
        total += 1 
return total 

 
a. What is the expected value added to total in a single iteration of the loop? 

b. What is the final expected value for total? 

7. After implementing and running your code for Quicksort, fill in the table below. 
i. The first column denotes a test file. 

ii. The remaining columns denote which variant of Quicksort you should use. 
 

For example, for the cell in the fourth row, third column you would use the median3 variant of 
Quicksort and the ordered-10000.txt file. You should use the first row to test your code. Keep in 
mind that the values for the random columns should vary on each run. 
 
If your code encounters a stack-overflow (RuntimeError: maximum recursion 

depth exceeded), you can try to fix the problem by changing the stack limit, or you can 
write “SO” in the corresponding cell. 
 

File first median3 random random random 

ordered-10.txt 45 19 26 28 27 

ordered-100.txt      

ordered-10000.txt      

randomized-10.txt      

randomized-100.txt      

randomized-10000.txt      

 
Write down two observations you can make from the table above. 


