Computational Complexity

https://cs.pomona.edu/classes/cs140/

P, NP, Completeness, Hardness

https://cs.lmu.edu/~ray/notes/npc/

https://complexityzoo.net/Complexity_Zoo

ALGORITHMS

Computer Scientists Break Traveling Salesperson Record

19 | **19**

After 44 years, there's finally a better way to find approximate solutions to the notoriously difficult traveling salesperson problem.

https://www.quantam agazine.org/computerscientists-breaktraveling-salespersonrecord-20201008/

Islenia Mil for Quanta Magazine

Contributing

Correspondent

October 8, 2020

Erica Klarreich

hen Nathan Klein started graduate school two years ago, his advisers proposed a modest plan: to work together on one of the most famous, long-standing problems in theoretical computer science.

Even if they didn't manage to solve it, they figured, Klein would learn a lot in the process. He went along with the idea. "I didn't know to be intimidated," he said. "I was just a first-year grad student — I don't

Share this article

Newsletter

Get Quanta Magazine delivered to your inbox

Computer Scientists Break Traveling Salesperson Record

After 44 years, there's finally a better way to find approximate solutions to the notoriously difficult traveling salesperson problem.

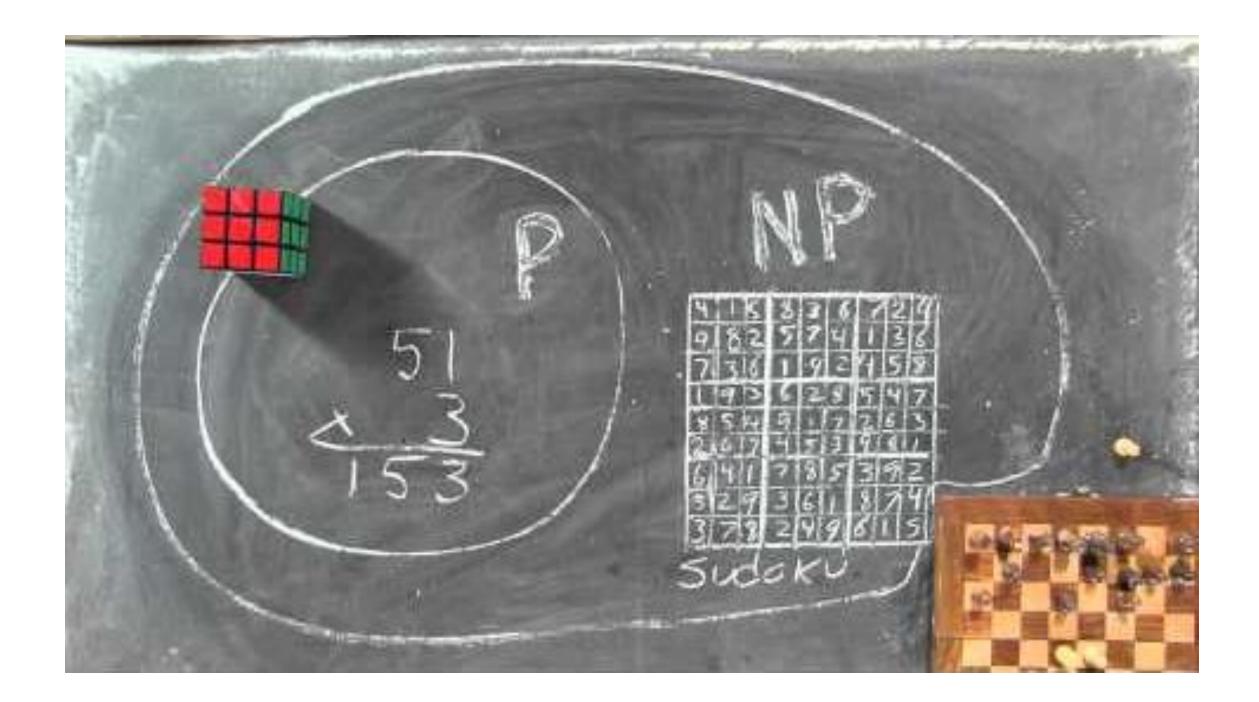
Outline

Topics and Learning Objectives

- Discuss complexity theory
- Discuss common complexity classes (P, NP, NP-Hard, NP-Complete)
- Cover the travelling salesperson problem (TSP)

Exercise

• In slides



Computational Complexity Classification

Classify problems according to difficulty

- "With respect to input size, these problems take linear time to solve."
- "These problems require quadratic memory when compared to the input size."
- "These problems are hard because they require significant [insert resource]."

Relate classes to one another

"This class of problems is computationally harder than this other class."

Problems can relate to many things

• Decision problems (output "yes" or "no"), optimization problems (output best solution), function problems (similar to decision, but more complex output)

Types of Problems

We'll focus on two types of problems

- Optimization (output the optimal answer/solution)
- 2. Decision (output a "yes" or "no")

Example optimization:

What is minimal spanning tree (MST) for G?

Example <u>decision</u>:

Does a given tree span G with a cost less than k?

Does not require you to solve for such a tree.

P: is the set of polynomial-time solvable problems

Most of what we've covered is in the class P

Some things not in P that we've seen:

- Shortest path algorithms that must work with negative cycles
- Algorithms for The Knapsack Problem

Note that:

- Some problems in P are slow to solve (large input or large exponent)
- Some problems <u>not in</u> P are tractable (smaller input or good heuristics)

P: set of problems that are polynomial-time solvable

NP: set of problems that are nondeterministic polynomial-time solvable

Complete: among the hardest problems in a complexity class (like P or NP)

For example: NP-Complete contains the hardest problems in NP

We don't know the lower bound on the running time for finding an answer these problems.

Hard: at least (can be harder) has hard as everything in some complexity class

For example: NP-Hard contains problems at least as hard as all NP

NP-Hard also contains problems that are harder than those in NP

We are pretty sure (but have not proven) that these problem are not P

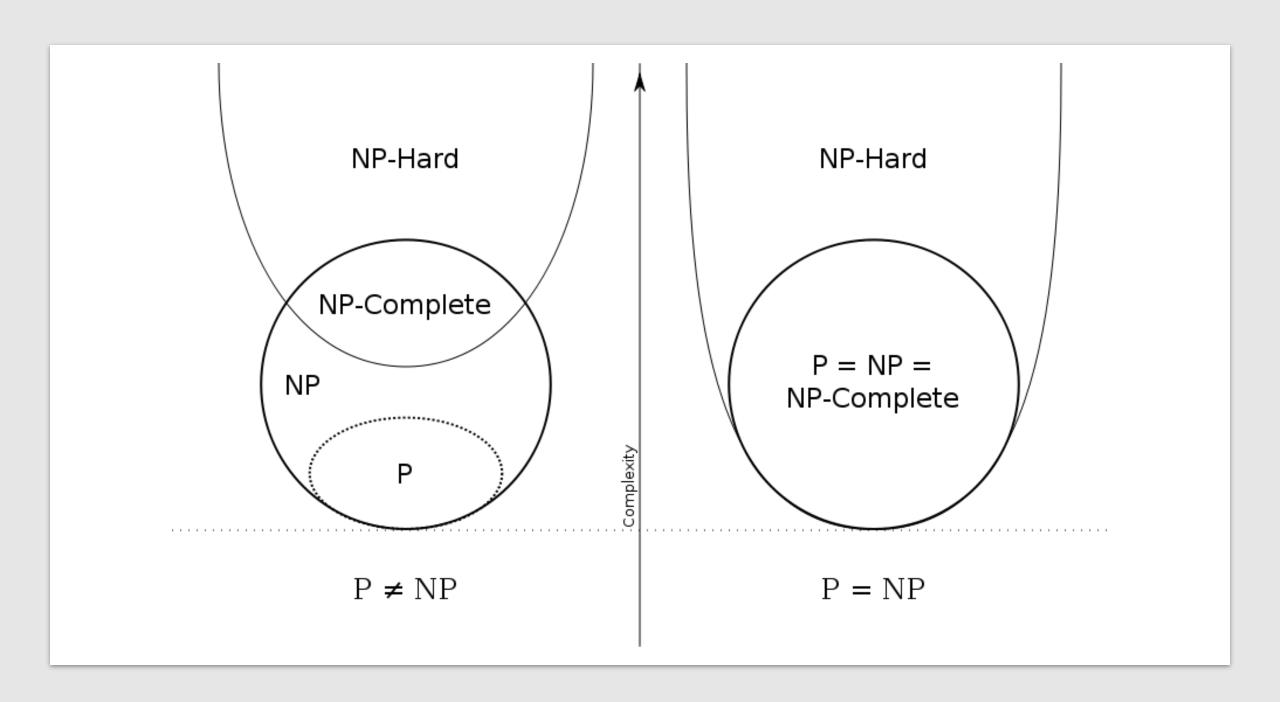
Definition of NP

The class of computational problems for which a given solution can be verified as a solution in polynomial time by a deterministic Turing machine (or solvable by a non-deterministic Turing machine in polynomial time).

This does **not** imply that you **can or cannot** calculate the solution in polynomial time. We might not have a proof either way.

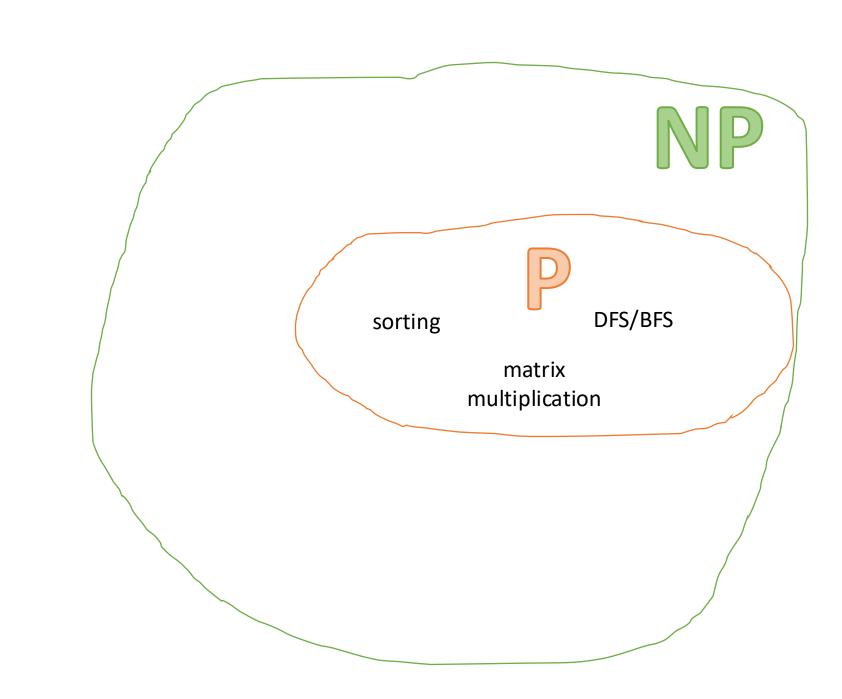
Some problems can be verified faster than they can be solved.

• Comparison-based sorting: solve in O(n lg n); verify in O(n)



For a problem "X"		Verify In:		
		Polynomial Time	Not Polynomial Time	
Cal. a La	Polynomial Time	$X \in P$??	
Solve In:	Not Polynomial Time	$X \in NP ext{-}Complete$	X ∈ NP-Hard	X

 $X \in NP$



NP-Hard

protein folding

perfect chess play

maximum clique

standard TSP

min-color

halting problem

job scheduling

circuit design

NP-

Complete

decision TSP

NP

DFS/BFS

matrix multiplication

sorting

NP-Intermediate

NPI might not exist

Check-In

To which set(s) does Sudoku belong?

		Verify In:			
For a pro	For a problem "X"		Not Polynomial Time		
Columbia.	Polynomial Time	$X \in P$??		
Solve In:	Not Polynomial Time	$X \in NP ext{-}Complete$	X ∈ NP-Hard		

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1
7				2				1 6
	6					2	8	
			4	1	9			5
				8			7	9

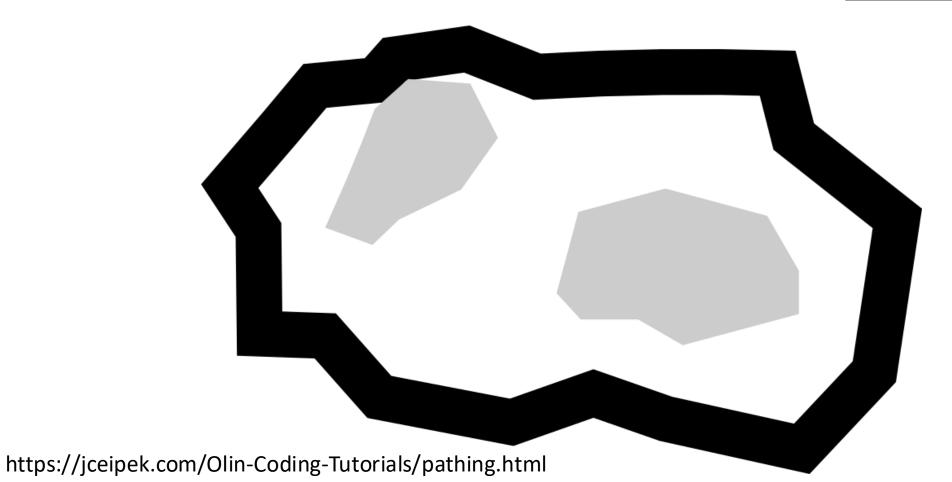
5	3	4	6	7			1	2
6	7	2	1	9	5	3	4	8
1	9	8	ന	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6		5	3	7	9	1
7	1	3	ഠ	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9			5
3	4	5	2	8	6	1	7	9

Sudoku gets more difficult at the board size is increased. The increase in difficulty is not polynomial.

Check-In

To which set(s) does AI walking belong?

For a problem "X"		Verify In:			
		Polynomial Time	Not Polynomial Time		
Calua Inc	Polynomial Time	$X \in P$??		
Solve In:	Not Polynomial Time	$X \in NP ext{-}Complete$	$X \in NP ext{-Hard}$		



Check-In

To which set(s) does SMB belong?

For a problem "X"		Verify In:			
		Polynomial Time	Not Polynomial Time		
Calva Inv	Polynomial Time	$X \in P$??		
Solve In:	Not Polynomial Time	$X \in NP ext{-}Complete$	$X \in NP ext{-Hard}$		

NP-hardness proof

Tractability (and intractability)

• A problem is considered tractable if it is polynomial-time solvable.

• A problem is polynomial-time solvable if there is an algorithm that correctly solves it in $O(n^k)$ time (k is just some constant).

• Typically, we think of k as being 1, 2, 3, or 4. Much higher than that and the problem begins to feel intractable even though it is *technically* polynomial time solvable.

Let's Motivate our NP Discussion

The Traveling Salesperson Problem

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

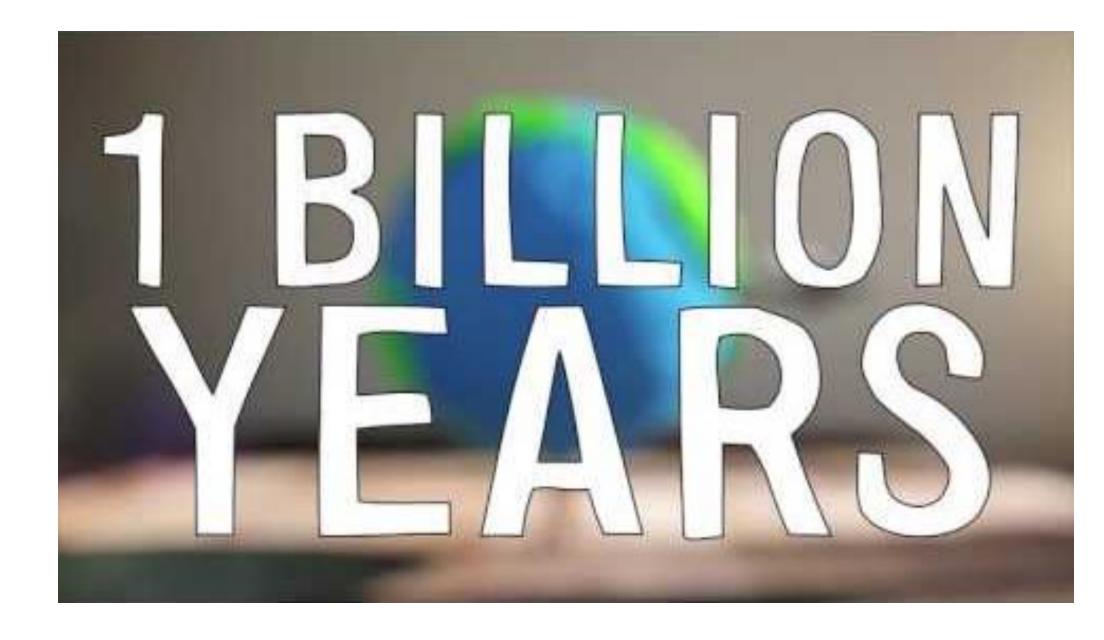
- Input: a complete, undirected graph with non-negative edge costs
- Output: a minimum cost tour (a cycle that visits each vertex once)
 - Also known as a Hamiltonian Cycle
- Applications?

Let's Motivate our NP Discussion

The Traveling Salesperson Problem

- Input: a complete, undirected graph with non-negative edge costs
- Output: a minimum cost tour (a cycle that visits each vertex once)
- What is a naïve solution to this problem? n!

"Every time you shuffle a deck of cards well. Chances are that they are in an order that they have never been in before."



Traveling Salesperson Problem

How many different tours exist?

- This problem has been extensively studied by many of the most well-known computer scientists since the late 1950s.
- We do not know if a polynomial time algorithm exists for TSP.
- In 1965 it was conjectured that no polynomial-time algorithm exists for TSP.
- This conjecture is part of what motived the need for computation complexity classifications.
- We have found an exponential-time algorithm for solving the problem.

Quick History

- In roughly 1971-1974, the field of computer science came up with the concept of NP.
- This has a pretty big impact on many fields.
- P is the class of all polynomial-time solvable problems
- NP is the class of all problems whose solutions can be verified in polynomial-time
- It is widely believed that P ≠ NP
- Though, some expert computer scientists and mathematicians believe that P = NP

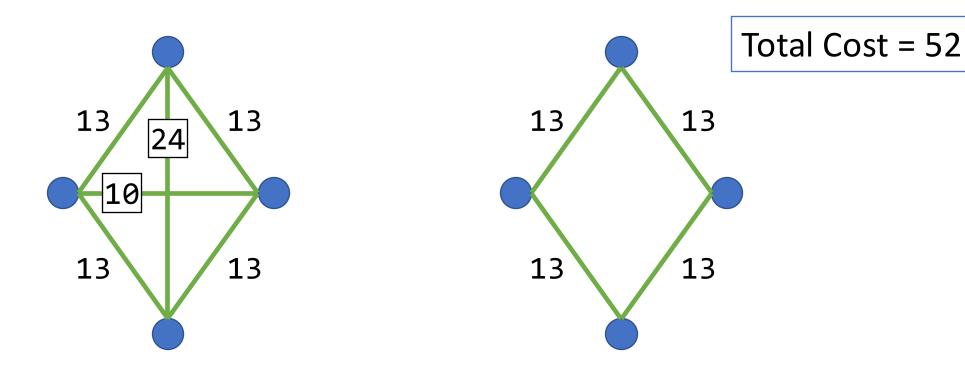
Let's Motivate our NP Discussion

The Traveling Salesperson Problem

- Input: a complete, undirected graph with non-negative edge costs
- Output: a minimum cost tour (a cycle that visits each vertex once)

- What is a naïve solution to this problem?
- Is a greedy solution the optimal solution?

Greedy Traveling Salesperson Problem?



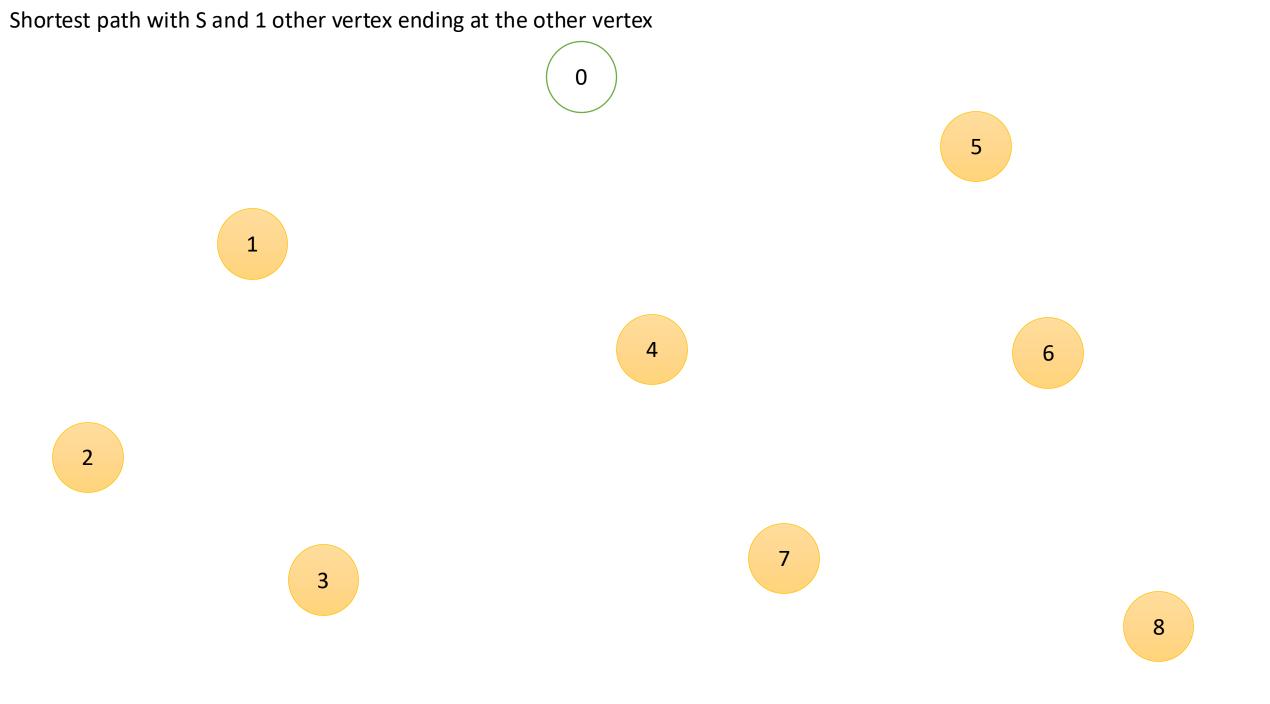
Let's Motivate our NP Discussion

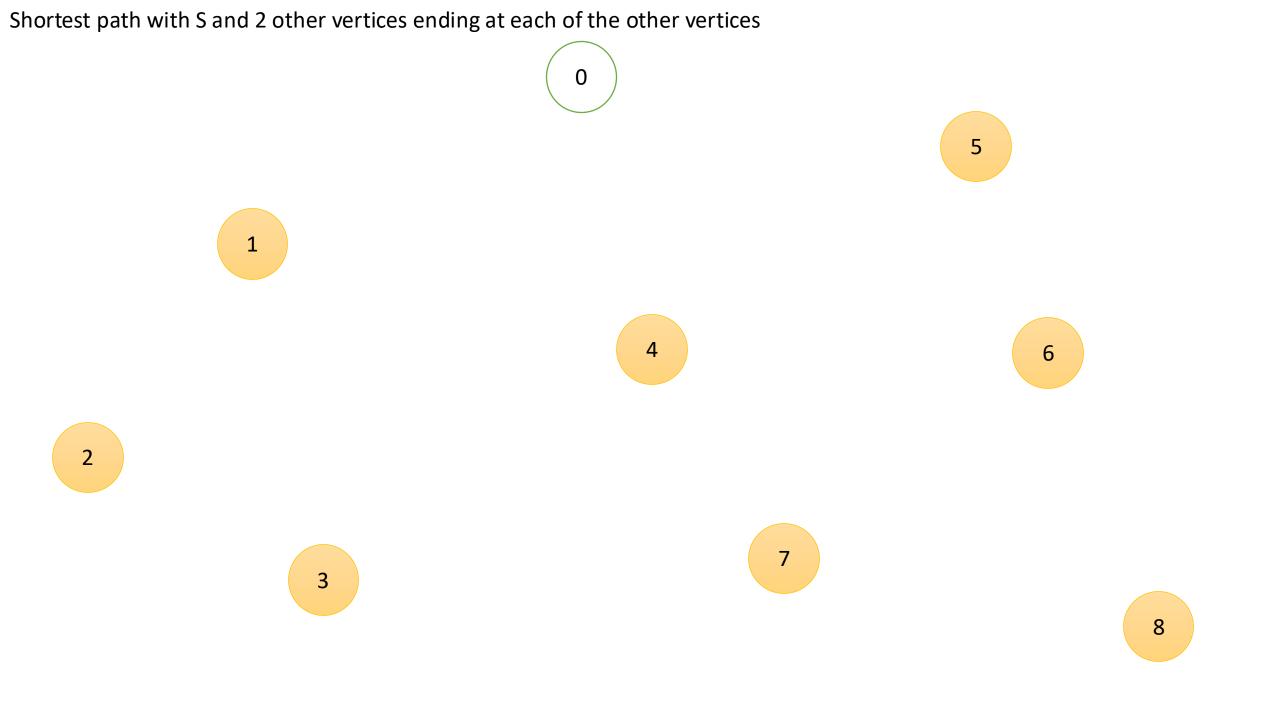
The Traveling Salesperson Problem

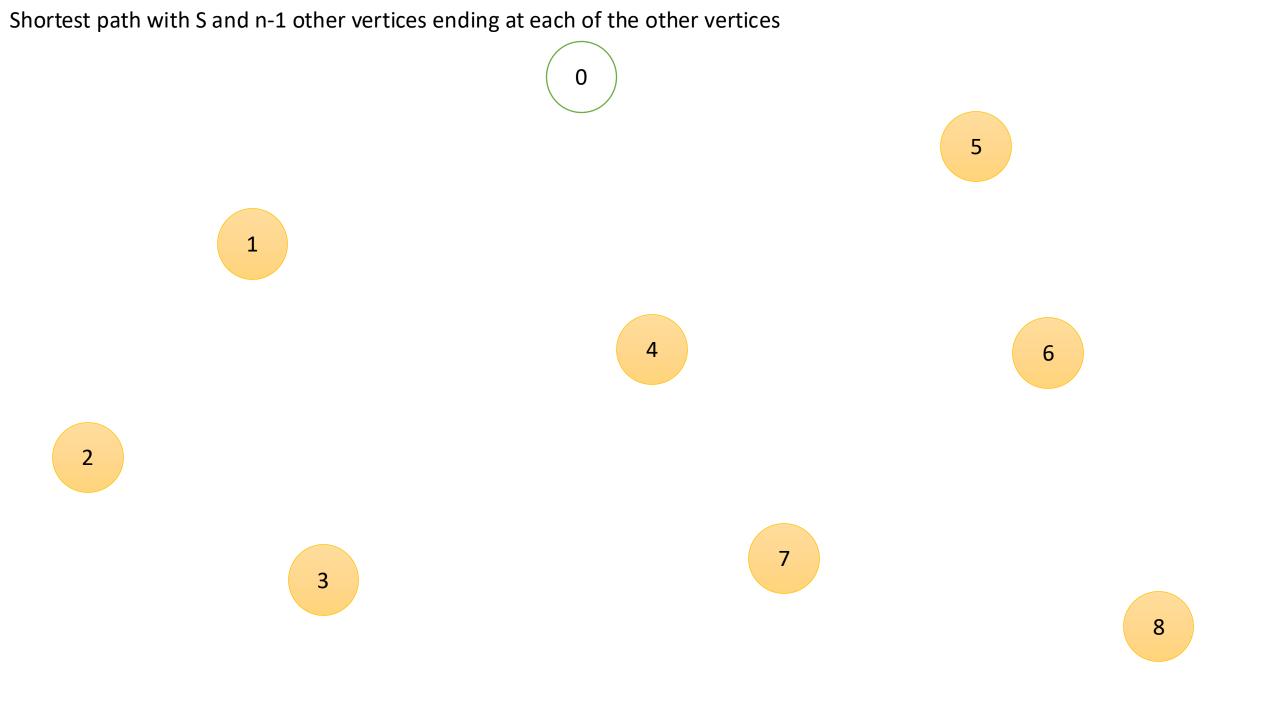
- Input: a complete, undirected graph with non-negative edge costs
- Output: a minimum cost tour (a cycle that visits each vertex once)

- What is a naïve solution to this problem?
- Is a greedy solution the optimal solution?
- Is this a good candidate for dynamic programming?

- Compute optimal solution for n vertices using optimal solution with n - 1 vertices
 - 1. Pick a starting vertex S
 - 2. Find all optimal paths that include S and one other vertex
 - 3. Find all optimal paths that include S and two other vertices
 - 4. ...
 - ~n. Find all optimal paths that include S and n-1 other vertices
- Similar to Bellman-Ford single-source shortest path algorithm







```
FUNCTION BellmanHeldKarp(G)
   n = G.vertices.length
   # Compute all pairwise Euclidean distances between vertices
   dists = ComputeDistances(G)
   # Create and initialize a two-dimensional cost matrix
   # n : final vertex
   # 2^n : different sets of vertices (a powerset)
   costs = Matrix(n, 2^n)
   # Let's use 0 as the start vertex
                                                    (0)
   FOR v IN [1 ... < n]
      costs(v, \{0, v\}) = dists(0, v)
                                        2
                                              3
```

```
5
                                                           6
# Compute paths for all possible subsets of vertices
other vertices = G.vertices - {0}
FOR size IN [2 ... <= n]
   FOR subset IN PowerSet (other vertices, size)
      FOR next IN subset
         min cost = INFINITY
         state = subset - {next}
         FOR end IN state
            new cost = costs(end, state) + dists(end, next)
            IF new cost < min cost</pre>
               min cost = new cost
         costs(next, subset + {0}) = min cost
```

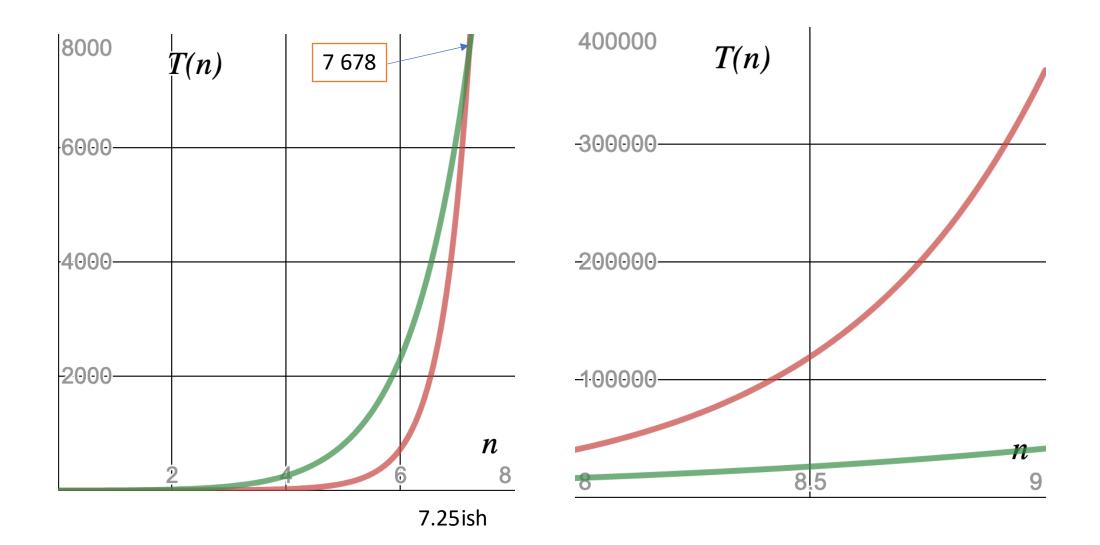
```
0
                                                          5
                                         1
                                                  4
                                                            6
# Grab the cheapest tour
min tour cost = INFINITY
FOR end IN [1 ... < n]
   tour cost = costs(end, G.vertices) + dists(end, 0)
   IF tour cost < min tour cost
      min tour cost = tour cost
```

```
0
                                                                     5
                                                 1
                                                            4
                                                                       6
# Compute the tour by back tracking through costs
min tour = ComputeTour(G, costs, dists)
RETURN min tour cost, min tour
```

```
FUNCTION BellmanHeldKarp (G)
   n = G.vertices.length
   # Compute all pairwise Euclidean distances between vertices
  dists = ComputeDistances(G)
   # Create and initialize a two-dimensional cost matrix
         : final vertex
   # 2^n : different sets of vertices (a powerset)
   costs = Matrix(n, 2^n)
   # Let's use 0 as the start vertex
   FOR v IN [1 ..< n]
      costs(v, \{0, v\}) = dists(0, v)
   # Compute paths for all possible subsets of vertices
   other vertices = G.vertices - {0}
   FOR size IN [2 ... <= n]
      FOR subset IN PowerSet(other vertices, size)
         FOR next IN subset
            min cost = INFINITY
            state = subset - {next}
            FOR end IN state
               new cost = costs(end, state) + dists(end, next)
               IF new cost < min cost
                  min cost = new cost
            costs(next, subset + {0}) = min cost
   # Grab the cheapest tour
  min tour cost = INFINITY
   FOR end IN [1 ... < n]
      tour cost = costs(end, G.vertices) + dists(end, 0)
      IF tour cost < min tour cost
        min tour cost = tour cost
   # Compute the tour by back tracking through costs
  min tour = ComputeTour(G, costs, dists)
   RETURN min tour cost, min tour
```

Total Running Time of O(n²2ⁿ)

n! vs n^22^n



Solving the TSP

• There are n! total possible tours.

Input Size	Brute-Force n!	Exponential O(n ² 2 ⁿ)
14	87 billion	3 million
15	1 trillion	7 million
16	20 trillion	16 million
30	265 nonillion	966 billion

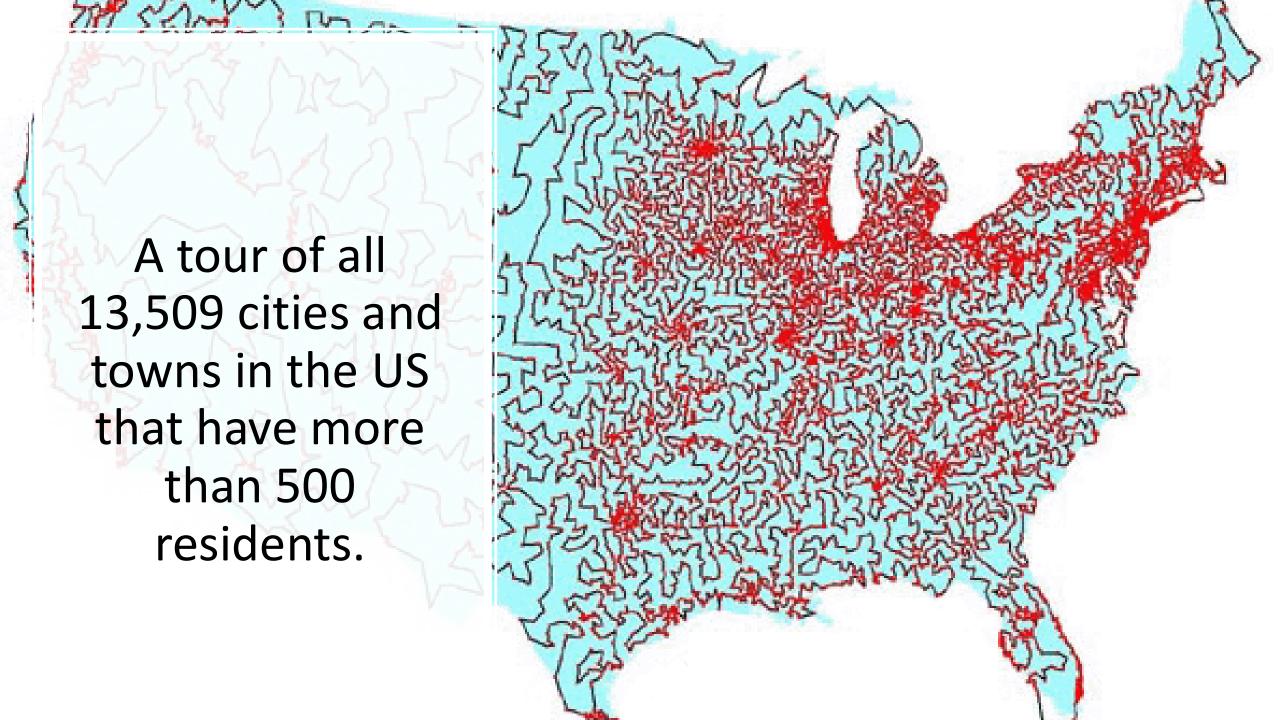
Your personal computer can handle about 23 cities.

Solving the TSP

There are n! total possible

What happens we we need to optimize deliveries to 1,000 or 10,000 cities?

Input Size	Brute	
14	87 billion 178 million	~ 3 million
15	1 trillion 307 billion	~ 7 million
16	20 trillion 922 billion	~ 16 million
30	265 nonillion 252 octillion 859 septillion 812 sextillion 191 quintillion 58 quadrillion 636 trillion	~ 966 billion 367 million



Standard TSP

What is the length of a solution to the TSP problem?

n

How long does it take to verify the solution?

In order to check that a proposed tour is a solution of the TSP we need to check two things, namely

- 1. That each city is is visited only once
- 2. That there is no shorter tour than the one we are checking

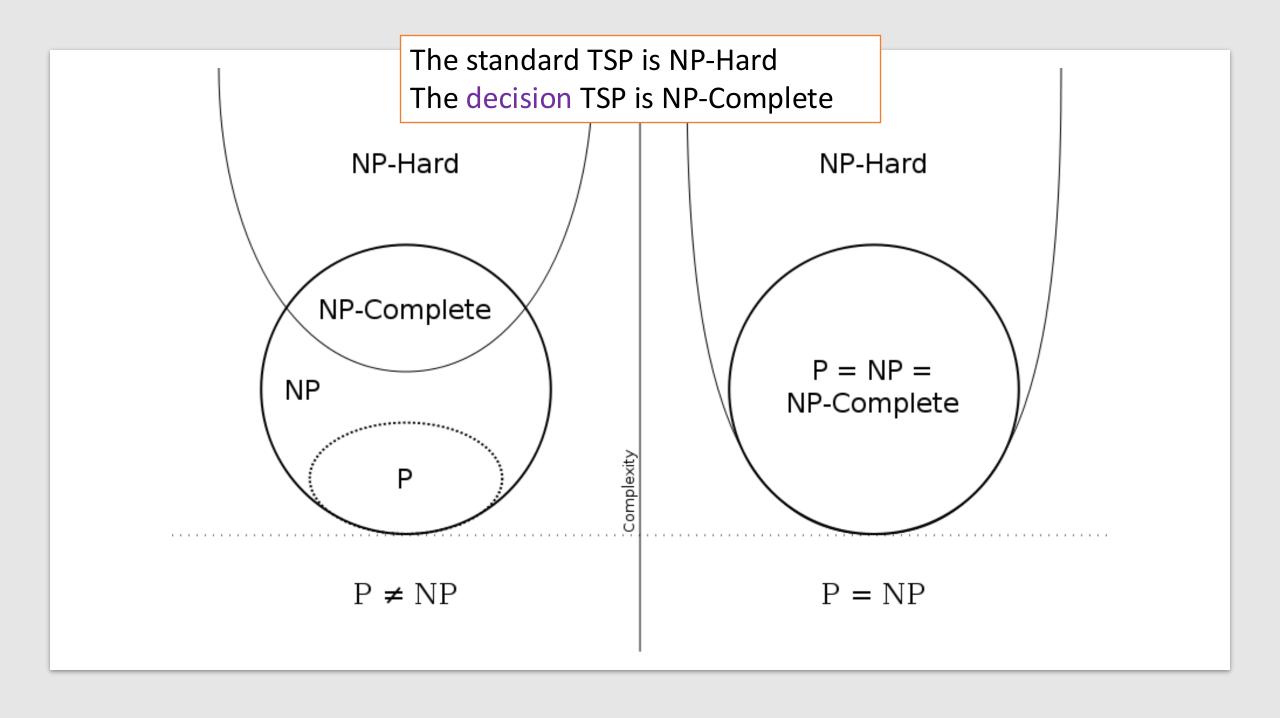
Nobody has found a way to do this in polynomial time!

TSP Variations

How long does it take to verify the solution to this altered version:

- Given the output tour T and some total length L
- Is T a tour with a total length less than L?
- This is called the Decision TSP.

- The standard TSP is NP-Hard. (it might be or might not be NP)
- The decision TSP is NP-Complete. (definitely NP, might be P if P = NP)
- Note: there are several other formulations of the TSP problem.



NP

- Some problems in NP can be solved by a brute-force algorithm in exponential time.
- Some problems in NP cannot be solved in exponential time.
- The vast majority of all computational problems are NP-Complete.
- A polynomial-time solution for any NP-Complete problem gives a polynomial time solution to all NP-Complete Problems.
- This would imply that P = NP
- Our world would change overnight if P = NP.
- We might not know the answer to P = NP or P ≠ NP for a long time.

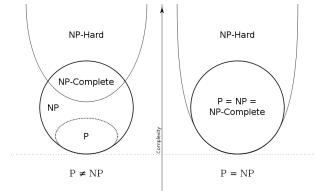
Recap: NP

A problem is NP if one can easily (in polynomial time) check that a proposed solution is indeed a solution.

A problem is NP-hard if it is at least as difficult as any NP problem.

A problem is NP complete if it is both NP and NP hard.

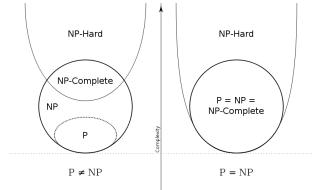
NP-Complete Exercise



What do you know about the (NP-Complete) graph partitioning problem?

- a. it is in NP-Hard
- b. the clique problem (a problem in P) can be reduced to it
- c. it is in NP
- d. it can be reduced to the SAT problem (an NP-Complete problem)

NP-Complete Exercise



What do you know about the (NP-Complete) graph partitioning problem?

- a. it is in NP-Hard
- b. the clique problem (a problem in P) can be reduced to it
- c. it is in NP
- d. it can be reduced to the SAT problem (an NP-Complete problem)
- e. It can be reduced to the clique problem (a problem in P)

Process for proving a problem is NP-Complete

- 1. Find a known NP-Complete Problem P1
- 2. Prove that P1 reduces to your problem P2

- This implies that P2 is at least as hard as P1 (P1 might be easier)
- And since P1 is NP-Complete, P2 must be at least NP-Hard
- If a solution to P2 can be verified in polynomial time, then P2 is also in NP
- Thus, P2 is NP-Complete