
• Bellman explains the reasoning behind the term dynamic programming in his
autobiography, Eye of the Hurricane: An Autobiography (1984):

I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for
multistage decision processes. An interesting question is, Where did the name,
dynamic programming, come from? The 1950s were not good years for
mathematical research. We had a very interesting gentleman in Washington
named Wilson. He was Secretary of Defense, and he actually had a pathological
fear and hatred of the word research. I’m not using the term lightly; I’m using it
precisely. His face would suffuse, he would turn red, and he would get violent if
people used the term research in his presence. You can imagine how he felt, then,
about the term mathematical.

The RAND Corporation was employed by the Air Force, and the Air Force had
Wilson as its boss, essentially. Hence, I felt I had to do something to shield Wilson
and the Air Force from the fact that I was really doing mathematics inside the
RAND Corporation. What title, what name, could I choose? In the first place I was
interested in planning, in decision making, in thinking. But planning, is not a good
word for various reasons. I decided therefore to use the word “programming”. I
wanted to get across the idea that this was dynamic, this was multistage, this was
time-varying. I thought, let's kill two birds with one stone. Let's take a word that
has an absolutely precise meaning, namely dynamic, in the classical physical sense.
It also has a very interesting property as an adjective, and that it's impossible to
use the word dynamic in a pejorative sense. Try thinking of some combination that
will possibly give it a pejorative meaning. It's impossible.

Thus, I thought dynamic programming was a good name. It was something not
even a Congressman could object to. So I used it as an umbrella for my activities.

1

The Knapsack Problem
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

• Discuss the dynamic programming paradigm

• Solve the 0-1 Knapsack Problem

Assessments

• Knapsack Example

3

The Knapsack Problem

Input:

• A capacity W (a nonnegative integer) and

• n items, where each item has:
• A value vi, and (must be nonnegative values)
• A size/weight wi (must be nonnegative values and integral)

Output: a subset of the items called S

Where S maximizes this equation:

𝑖 𝜖 𝑆

𝑣𝑖

Subject to the constraint:

𝑖 𝜖 𝑆

𝑤𝑖 ≤ 𝑊

4

Knapsack Applications

Budgeting a resource
• Given a finite amount of time, schedule as much prioritized work as possible

• Different from the greedy scheduling problem

• Some tasks might not be completed

Burglarizing
• Steal as much value as possible

• Objects have different sizes and different values

(Image from Rensselaer)
5

Knapsack Example, Does greedy work?

S if W = 3?

v = 5
w = 2

1
v = 3
w = 2

2
v = 2
w = 1

3
v = 6
w = 3

4

v = 5
w = 2

1

v = 2
w = 1

3

1. Greedy by highest value?

Item #s:

What is the optimal set?

6

Knapsack Example, Does greedy work?

v = 5
w = 2

1
v = 3
w = 2

2
v = 2
w = 1

3
v = 6
w = 3

4

v = 5
w = 2

1

v = 2
w = 1

3

1. Greedy by highest value?
2. Greedy by lowest weight?

Item #s:

S if W = 3?
7

Knapsack Example, Does greedy work?

v = 5
w = 2

1
v = 3
w = 2

2
v = 2
w = 1

3
v = 6
w = 3

4

v = 5
w = 2

1

v = 2
w = 1

3

Item #s:

S if W = 4?

v = 6
w = 3

4

v = 2
w = 1

3

1. Greedy by highest value?
2. Greedy by lowest weight?

S if W = 3?
8

Knapsack Example, Does greedy work?

v = 5
w = 2

1
v = 3
w = 2

2
v = 2
w = 1

3
v = 6
w = 3

4

v = 5
w = 2

1

v = 2
w = 1

3

5/2 = 2.5 3/2 = 1.5 2/1 = 2 6/3 = 2

Item #s:

v = 6
w = 3

4

v = 2
w = 1

3

1. Greedy by highest value?
2. Greedy by lowest weight?
3. Greedy by best ratio?

S if W = 3? S if W = 4?
9

This works if you are allowed to take fractions of items (Fractional Knapsack).

Knapsack Example, Does greedy work?

v = 5
w = 2

1
v = 3
w = 2

2
v = 2
w = 1

3
v = 6
w = 3

4

v = 5
w = 2

1

v = 2
w = 1

3

v = 6
w = 3

4

v = 2
w = 1

3

5/2 = 2.5 3/2 = 1.5 2/1 = 2 6/3 = 2

Item #s:

1. Greedy by highest value?
2. Greedy by lowest weight?
3. Greedy by best ratio?

S if W = 3? S if W = 4?
10

Dynamic Programming and Knapsacks

• Step 1: formulate a recurrence relationship based on the structure of
the optimal solution.

• Another way to say this: look at the optimal solution as if it were a
function of solutions to smaller problems.

• Let S be our optimal solution to the Knapsack Problem

• S doesn’t have any particular ordering but let's assume it does.

• Let’s label each of the n items and give them a sequence id: 1 … n

11

Dynamic Programming and Knapsacks

Case 1: suppose that item n is not in the optimal set S

• How does S relate to the first “n – 1” items?

• How do these first “n – 1” items relate to W?

• The set S must be optimal with respect to
• Using only the first n – 1 items (imagine item n never existed) and

• with respect to W.

12

Dynamic Programming and Knapsacks

Case 2: suppose that item n is in S

What can we say about S – {n}? Let’s call this S’

a. S’ must be optimal with respect to the first “n – 1” items and W.

b. S’ must be optimal with respect to the first “n – 1” items and W - wn.

c. S’ must be optimal with respect to the first “n – 1” items and W - vn.

d. S’ might not be feasible for W - wn.

13

Case 2: suppose that item n is in S

W = 4

v = 2
w = 2

1
v = 3
w = 3

2
v = 2
w = 2

3
What can we say about S – {n}?

a. S’ must be optimal with respect to the
first “n – 1” and W.

b. S’ must be optimal with respect to the
first “n – 1” and W - wn.

c. S’ must be optimal with respect to the
first “n – 1” and W - vn.

d. S’ might not be feasible for W - wn.

v = 2
w = 2

1

v = 2
w = 2

3

S

14

Case 2: suppose that item n is in S

W = 4

v = 2
w = 2

1
v = 3
w = 3

2
What can we say about S – {n}?

S’ must be optimal with respect to the
first “n – 1” and W.

b. S’ must be optimal with respect to the
first “n – 1” and W - wn.

c. S’ must be optimal with respect to the
first “n – 1” and W - vn.

d. S’ might not be feasible for W - wn.

v = 2
w = 2

1

S

15

v = 2
w = 2

3

v = 2
w = 2

3

Case 2: suppose that item n is in S

W = 4

v = 2
w = 2

1
v = 3
w = 3

2
What can we say about S – {n}?

S’ must be optimal with respect to the
first “n – 1” and W.

b. S’ must be optimal with respect to the
first “n – 1” and W - wn.

c. S’ must be optimal with respect to the
first “n – 1” and W - vn.

d. S’ might not be feasible for W - wn.

v = 2
w = 2

1

S

16

v = 2
w = 2

3

v = 2
w = 2

3

Case 2: suppose that item n is in S

W = 4, 2

v = 2
w = 2

1
v = 3
w = 3

2
What can we say about S – {n}?

a. S’ must be optimal with respect to the
first “n – 1” and W.

S’ must be optimal with respect to the
first “n – 1” and W - wn.

c. S’ must be optimal with respect to the
first “n – 1” and W - vn.

d. S’ might not be feasible for W - wn.

v = 2
w = 2

1

S

17

v = 2
w = 2

3

v = 2
w = 2

3

Dynamic Programming and Knapsacks

Case 2: suppose that item n is in S

• What can we say about S – {n}?

• It must be optimal with respect to the first “n – 1” and W - wn.

• Otherwise, there must exist some S* that is better than S – {n } for
the first “n – 1” items.

• If S* is better for the first “n – 1”, then it must be better than S + {n}
when you add some arbitrary item that is not in S.

• This is a contradiction since we stated that S is the optimal solution

18

Examining the Cases to Create Subproblems

Case 1: suppose that item n is not in S

• → S must be optimal for the first “n – 1” items with respect to W.

Case 2: suppose that item n is in S

• → S – {n} must be optimal with respect to the first “n – 1” and W - wn.

Let Vi,x be the value of the best solution such that:

• It only considers the first i items.
• It has a total size/weight ≤ x.

Vi,x = max(V(i - 1),x and vi + V(i - 1),(x - wi))

19

That was just part of step 1

As a reminder:

Step 1: formulate a recurrence relationship based on the
structure of the optimal solution. And identify the subproblems.

What are our subproblems?

• All possible prefixes for the items: 1, 2, …, i

• All possible remaining capacities x can be: 0, 1, …, W

Both integer
values only.

20

What’s next?

• Step 2: Quickly and correctly solve larger subproblems when provided
solutions to the smaller subproblems.

• We’ll use a bottom-up / tabular approach (not top-down / memorized)

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

Case 1

Case 2

21

Dynamic Programming for Knapsacks

Handle the edge case

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

22

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

Capacity
Available

6

5

4

3

2

1

0

0 1 2 3 4

Number of Items Considered

Exercise

23

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

What do we return?

24

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

 RETURN table[n][capacity]

25

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

 RETURN table[n][capacity]

Capacity
Available

6 0

5 0

4 0

3 0

2 0

1 0

0 0 0 0 0 0

0 1 2 3 4

Number of Items Considered 26

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

 RETURN table[n][capacity]

Capacity
Available

6 0

5 0

4 0

3 0

2 0

1 0

0 0 0 0 0 0

0 1 2 3 4

Number of Items Considered

First
Column

27

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

 RETURN table[n][capacity]

Capacity
Available

6 0 3

5 0 3

4 0 3

3 0 0

2 0 0

1 0 0

0 0 0 0 0 0

0 1 2 3 4

Number of Items Considered

First
Column

28

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

 RETURN table[n][capacity]

Capacity
Available

6 0 3

5 0 3

4 0 3

3 0 0

2 0 0

1 0 0

0 0 0 0 0 0

0 1 2 3 4

Number of Items Considered

Second
Column

29

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

 RETURN table[n][capacity]

Capacity
Available

6 0 3 3

5 0 3 3

4 0 3 3

3 0 0 2

2 0 0 0

1 0 0 0

0 0 0 0 0 0

0 1 2 3 4

Number of Items Considered

Second
Column

30

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

 RETURN table[n][capacity]

Capacity
Available

6 0 3 3

5 0 3 3

4 0 3 3

3 0 0 2

2 0 0 0

1 0 0 0

0 0 0 0 0 0

0 1 2 3 4

Number of Items Considered

Third
Column

31

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

 RETURN table[n][capacity]

Capacity
Available

6 0 3 3 7

5 0 3 3 6

4 0 3 3 4

3 0 0 2 4

2 0 0 0 4

1 0 0 0 0

0 0 0 0 0 0

0 1 2 3 4

Number of Items Considered

Third
Column

32

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

 RETURN table[n][capacity]

Capacity
Available

6 0 3 3 7

5 0 3 3 6

4 0 3 3 4

3 0 0 2 4

2 0 0 0 4

1 0 0 0 0

0 0 0 0 0 0

0 1 2 3 4

Number of Items Considered

Fourth
Column

33

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

 RETURN table[n][capacity]

Capacity
Available

6 0 3 3 7 8

5 0 3 3 6 8

4 0 3 3 4 4

3 0 0 2 4 4

2 0 0 0 4 4

1 0 0 0 0 0

0 0 0 0 0 0

0 1 2 3 4

Number of Items Considered

Fourth
Column

34

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

 RETURN table[n][capacity]

Capacity
Available

6 0 3 3 7 8

5 0 3 3 6 8

4 0 3 3 4 4

3 0 0 2 4 4

2 0 0 0 4 4

1 0 0 0 0 0

0 0 0 0 0 0

0 1 2 3 4

Number of Items Considered

Where
is

the
answer?

35

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

 RETURN table[n][capacity]

Capacity
Available

6 0 3 3 7 8

5 0 3 3 6 8

4 0 3 3 4 4

3 0 0 2 4 4

2 0 0 0 4 4

1 0 0 0 0 0

0 0 0 0 0 0

0 1 2 3 4

Number of Items Considered

Where
is

the
answer?

36

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

 RETURN table[n][capacity]

Capacity
Available

6 0 3 3 7 8

5 0 3 3 6 8

4 0 3 3 4 4

3 0 0 2 4 4

2 0 0 0 4 4

1 0 0 0 0 0

0 0 0 0 0 0

0 1 2 3 4

Number of Items Considered

What
do
we

take?

37

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

Capacity
Available

6 0 3 3 7 8

5 0 3 3 6 8

4 0 3 3 4 4

3 0 0 2 4 4

2 0 0 0 4 4

1 0 0 0 0 0

0 0 0 0 0 0

0 1 2 3 4

Number of Items Considered

What
do
we

take?

FUNCTION KnapsackReconstruct(items, capacity, table)

 S = {}

 cap = capacity

 FOR i IN [n ..= 1]

 v = items[i].value

 w = items[i].weight

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 IF w ≤ cap && withItem ≥ withoutItem

 S = S + i

 cap = cap - w

 RETURN S

S

38

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

Capacity
Available

6 0 3 3 7 8

5 0 3 3 6 8

4 0 3 3 4 4

3 0 0 2 4 4

2 0 0 0 4 4

1 0 0 0 0 0

0 0 0 0 0 0

0 1 2 3 4

Number of Items Considered

What
do
we

take?

FUNCTION KnapsackReconstruct(items, capacity, table)

 S = {}

 cap = capacity

 FOR i IN [n ..= 1]

 v = items[i].value

 w = items[i].weight

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 IF w ≤ cap && withItem ≥ withoutItem

 S = S + i

 cap = cap - w

 RETURN S

S
4

39

n = 4, W = 6 v w

Item 1 3 4

Item 2 2 3

Item 3 4 2

Item 4 4 3

Capacity
Available

6 0 3 3 7 8

5 0 3 3 6 8

4 0 3 3 4 4

3 0 0 2 4 4

2 0 0 0 4 4

1 0 0 0 0 0

0 0 0 0 0 0

0 1 2 3 4

Number of Items Considered

What
do
we

take?

FUNCTION KnapsackReconstruct(items, capacity, table)

 S = {}

 cap = capacity

 FOR i IN [n ..= 1]

 v = items[i].value

 w = items[i].weight

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 IF w ≤ cap && withItem ≥ withoutItem

 S = S + i

 cap = cap - w

 RETURN S

S
4
3

40

Running Time?

a. O(n2)

b. O(nW)

c. O(n2W)

d. O(2n)

FUNCTION KnapSack(items, capacity)

 table = [[0] * (capacity + 1)] * (n + 1)

 FOR i IN [1 ..= n]

 v = items[i].value

 w = items[i].weight

 FOR cap IN [0 ..= capacity]

 withoutItem = table[i - 1][cap]

 withItem = table[i - 1][cap - w] + v

 table[i, cap] = max(withoutItem, withItem)

 RETURN table[n][capacity]

41

Correctness

A proof by induction can be constructed by examining the arguments
of cases 1 and 2.

Question on assignment

42

Most Common Variants

• 0-1 Knapsack – A thief robbing a store finds n items worth v1, v2, ..,
vn dollars and weight w1, w2, ..., wn pounds, where vi and wi are
integers. The thief can carry at most W pounds in the knapsack.
Which items should the thief take if they want to maximize value.

• Fractional knapsack problem – Same as above, but the thief happens
to be at the bulk section of the store and can carry fractional portions
of the items. For example, the thief could take 20% of item i for a
weight of 0.2wi and a value of 0.2vi.

43

Change Return Possibilities

How many ways can you return amount A using n kinds of coins?

All the ways returning amount A using all but the first kinds of coins
(using the other (n – 1) kinds of coins)

+

All the ways returning amount (A – d) using n kinds of coins, where d is
the denomination for the first kind of coin

Does this seem like a “hard” problem?

44

45

	Slide 1
	Slide 2: The Knapsack Problem
	Slide 3: Outline
	Slide 4: The Knapsack Problem
	Slide 5: Knapsack Applications
	Slide 6: Knapsack Example, Does greedy work?
	Slide 7: Knapsack Example, Does greedy work?
	Slide 8: Knapsack Example, Does greedy work?
	Slide 9: Knapsack Example, Does greedy work?
	Slide 10: Knapsack Example, Does greedy work?
	Slide 11: Dynamic Programming and Knapsacks
	Slide 12: Dynamic Programming and Knapsacks
	Slide 13: Dynamic Programming and Knapsacks
	Slide 14: Case 2: suppose that item n is in S
	Slide 15: Case 2: suppose that item n is in S
	Slide 16: Case 2: suppose that item n is in S
	Slide 17: Case 2: suppose that item n is in S
	Slide 18: Dynamic Programming and Knapsacks
	Slide 19: Examining the Cases to Create Subproblems
	Slide 20: That was just part of step 1
	Slide 21: What’s next?
	Slide 22: Dynamic Programming for Knapsacks
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Running Time?
	Slide 42: Correctness
	Slide 43: Most Common Variants
	Slide 44: Change Return Possibilities
	Slide 45

