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Outline

Topics and Learning Objectives

• Introduce Kruskal’s (greedy) algorithms for MSTs

• Discuss disjoint sets

Exercise

• Kruska’s exercise
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Extra Resources

• Introduction to Algorithms, 3rd, chapter 23

• Algorithms Illuminated Part 3, Chapter 15
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Trick Question for the Day

Which is asymptotically bigger?

𝑂(𝑚 lg 𝑛) 𝑜𝑟 𝑂(𝑚 lg 𝑚)
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Minimum-Spanning-Tree Overview

Input: an undirected graph where each edge has an associated cost

Output: a minimum-spanning-tree
1. Connects the entire graph as a tree, but

2. Has a minimal cost

Assumptions:

1. The input graph is connected
2. The edges costs are distinct (only necessary/useful for our proof)

Cut Property: if e is the cheapest edge crossing a cut, then it must be in the MST
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Kruskal’s

A greedy algorithm for finding the minimum spanning tree

Why are we learning another one?

• Kruskal’s will motivate a new data structure: Union-Find (disjoint-set)

• It will also let us talk a bit about clustering

Can you think of another greedy algorithm for solving MST?
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Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

  add e to T

Edge-based
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Sort E by edge cost
T = empty

For e in E:
 if T U {(u, v)} has no cycles
  add e to T
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Exercise question 1.

1. In what order are the edges selected 
using Kruskal’s Algorithm?
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Proof of Kruskal’s Algorithm

Theorem: Kruskal’s algorithm is correct (computes the MST)

Let T* = the output of Kruskal’s algorithm
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Graph/Cut/Tree Lemmas and Properties

• Empty Cut Lemma: a graph is not connected if there exists a cut (A, B) with 
zero crossing edges

• Double Crossing Lemma: suppose the cycle C has an edge crossing the cut 
(A, B), then there must be at least one more edge in C that crosses the cut

• No Cycle Corollary: if e is the only edge crossing some cut (A, B), then it is not in any 
cycle

• Cut Property: if e is the cheapest edge that crosses the cut (A, B) then it 
must be in the MST
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Proof of Kruskal’s Algorithm

Theorem: Kruskal’s algorithm is correct (computes the MST)

Let T* = the output of Kruskal’s algorithm

Does Kruskal’s output a spanning tree (what are the properties)?

• No cycles

• Connected
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Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

  add e to T
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Can Kruskal’s include an edge that creates a cycle?



Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

  add e to T
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Can Kruskal’s include an edge that creates a cycle?



Proof of Kruskal’s Algorithm

Theorem: Kruskal’s algorithm is correct (computes the MST)

Let T* = the output of Kruskal’s algorithm

Does Kruskal’s output a spanning tree (what are the properties)?

• No cycles (this is given by the definition of the algorithm)

• Connected
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Proof of Kruskal’s Algorithm

Proof of Connectivity

• Given the Empty Cut Lemma, we only need to show that Kruskal’s produces 
a tree T* that crosses every cut.

• Fix a cut (A,B)

• Since G is connected, at least one of its edges crosses the cut (A,B)

• Kruskal’s algorithm considers each edge once

• Let’s fast-forward to the first time that it encounters an edge crossing (A,B)

• Claim: this 1st edge is guaranteed to be in T*
• Given the No Cycle Corollary the claim is true

• It is also the minimum edge to cross the cut (sorted edges)
16
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Proof of Kruskal’s Algorithm

For the second part of the proof, we need to prove that T* is minimal

• We just finished proving that Kruskal’s outputs some spanning tree T*

Claim: every edge is justified by the Cut Property

• Remember that satisfying the Cut Property implies that we have an 
MST

• This was very explicit in Prim’s Algorithm
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Prim’s Minimum Spanning Tree Algorithm

X = {s}

T = empty

while X is not V:

 let e = (u, v) be the cheapest edge of G 

  with u in X and v not in X

 add e to T

 add v to X
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Proof of Kruskal’s Algorithm

Proving that we can use the Cut Property

• Consider each iteration where edge (u, v) is added to T*

• Since T* U {(u, v)} has no cycle, T* currently has no u->v path

• Thus, there must be a cut (A, B) separating u and v. For example:
• All findable from u in A given current T*
• All findable form v in B given current T*
• All other vertices can be partitioned arbitrarily

• Hence, (u, v) is the first crossing cut for (A, B)

• Additionally, it must be the cheapest such cut since we sorted the edges

• Finally, the edge (u, v) is justified by the Cut Property
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Proof of Kruskal’s Algorithm

What have we done?

We proved that Kruskal’s outputs a spanning tree

• No cycles by definition

• Connectivity by the Empty Cut Lemma

We then proved that Kruskal’s outputs the minimum spanning tree

• The Cut Property implies that we are left with the MST

• We showed that Kruskal’s uses the Cut Property because the edges are 
sorted
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Running Time and 
Implementation of Kruskal’s



Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

  add e to T

𝑂(𝑚 lg 𝑚)

𝑂(𝑚)
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How would you detect if adding (u,v) creates creates a cycle?



Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

  add e to T

𝑂(𝑚 lg 𝑚)

𝑂(𝑚)

Naïvely 𝑂(𝑛 + 𝑚)

O(m lg m) + O(m) * O(n+m) O(mn+m2)
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Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

  add e to T

What can we change (should 
we change) to do better?
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Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

  add e to T

What can we change (should 
we change) to do better?
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The Union-Find Data Structure

• Also known as the disjoint-set data structure

• Used to maintain a partition of objects

P3P1

P2 P4
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Union-Find 

Operations:

• Find(x): return the name of the group to which x belongs

• Union(Pi, Pj): merge the two partitions into a single partition

P3P1

P2 P4
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How does this help us with Kruskal’s?

• What do we store in the data structure?

• What makes a partition?
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Motivation

• Speed up the way in which we check for cycles.

• How would you implement the Union-Find data structure?

• → Augment each vertex to include another piece of information: the 
name of its leader
• Or use a separate data structure (what kind? → what operations matter?)

• Invariant: each vertex knows its leader

• How long does it take to check for a cycle now?
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Checking for cycles

• Given an edge (u, v), we can check if u and v are in the same partition 
in constant time O(1).

𝐹𝑖𝑛𝑑 𝑢 == 𝐹𝑖𝑛𝑑 𝑣 ?
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What happens during 
the next iteration?

What’s the catch?
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Maintaining the Invariant

• Invariant: each vertex knows its leader
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What is the maximum number 
of vertex leaders that must be 

fixed after a union?

Exercise Question 2

31



Union example.
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Union-Find Data Structure

• Put every element in its own partition
• Every element has its own leader

• Join partitions by copying the leader of the larger partition elements 
to all elements of the smaller partition

• You can use an array or hash table to keep track of leaders

• No other information/memory is needed
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Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

  add e to T

  union
What do we have as a 

running time now?
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What happened?

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

  add e to T

  union
We don’t do this every iteration

O(n+m) → O(1) (checking leaders)

O(1) → O(n) (updating leaders)
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𝑂(𝑚 lg 𝑚)

𝑂(𝑚)

Compared with finding cycles with BFS



Maximum number of leader updates?

How many times can we update the leader of a single vertex?

• We only update the leader of a vertex if we merge it with a bigger 
partition.

• How many times can we merge a vertex into a bigger partition?
• (Or: How many times can we double the size of a partition?)

• This is our global view of something happening inside the loop.
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Exercise Question 3

For e in E:
   if T U {(u, v)} has no cycles
      add e to T
      union



Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

  add e to T

  union

𝑂(1) just for the cycle check

Kruskal’s Minimum Spanning Tree Algorithm

𝑂(𝑚 lg 𝑚) 

𝑂(𝑚)

O(m) * O(1) O(m lg m)O(m lg m) O(n lg n)

Sort Union Loop Total

𝑂(𝑛 lg 𝑛) for Union (not per iteration)

Technically this is O(n lg n + m lg m)
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Cutting Edge

• Can we do better than O(m lg m)?

• Yes!

• Average O(m) using a randomized algorithm (1995)
• We do not actually know if a deterministic O(m) algorithm exists.

• We do have a deterministic algorithm that is O(m α(n))
• α is the inverse Ackermann function
• Which is slower than the Iterated logarithm: lg*

• the number of times the logarithm function must be 
iteratively applied before the result is less than or equal to 1

• An optimal deterministic algorithm was developed in 2002
• But we do not know the exact asymptotic complexity

• Just that it is between O(m) and O(m α(n))
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