
Kruskal’s MST Algorithm
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

• Introduce Kruskal’s (greedy) algorithms for MSTs

• Discuss disjoint sets

Exercise

• Kruska’s exercise

2

Extra Resources

• Introduction to Algorithms, 3rd, chapter 23

• Algorithms Illuminated Part 3, Chapter 15

3

Trick Question for the Day

Which is asymptotically bigger?

𝑂(𝑚 lg 𝑛) 𝑜𝑟 𝑂(𝑚 lg 𝑚)

4

Minimum-Spanning-Tree Overview

Input: an undirected graph where each edge has an associated cost

Output: a minimum-spanning-tree
1. Connects the entire graph as a tree, but

2. Has a minimal cost

Assumptions:

1. The input graph is connected
2. The edges costs are distinct (only necessary/useful for our proof)

Cut Property: if e is the cheapest edge crossing a cut, then it must be in the MST

6

Kruskal’s

A greedy algorithm for finding the minimum spanning tree

Why are we learning another one?

• Kruskal’s will motivate a new data structure: Union-Find (disjoint-set)

• It will also let us talk a bit about clustering

Can you think of another greedy algorithm for solving MST?

7

Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

 add e to T

Edge-based

8

Sort E by edge cost
T = empty

For e in E:
 if T U {(u, v)} has no cycles
 add e to T

17

29

47
31

53

73

67

Exercise question 1.

1. In what order are the edges selected
using Kruskal’s Algorithm?

9

Proof of Kruskal’s Algorithm

Theorem: Kruskal’s algorithm is correct (computes the MST)

Let T* = the output of Kruskal’s algorithm

10

Graph/Cut/Tree Lemmas and Properties

• Empty Cut Lemma: a graph is not connected if there exists a cut (A, B) with
zero crossing edges

• Double Crossing Lemma: suppose the cycle C has an edge crossing the cut
(A, B), then there must be at least one more edge in C that crosses the cut

• No Cycle Corollary: if e is the only edge crossing some cut (A, B), then it is not in any
cycle

• Cut Property: if e is the cheapest edge that crosses the cut (A, B) then it
must be in the MST

11

Proof of Kruskal’s Algorithm

Theorem: Kruskal’s algorithm is correct (computes the MST)

Let T* = the output of Kruskal’s algorithm

Does Kruskal’s output a spanning tree (what are the properties)?

• No cycles

• Connected

12

Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

 add e to T

13

Can Kruskal’s include an edge that creates a cycle?

Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

 add e to T

14

Can Kruskal’s include an edge that creates a cycle?

Proof of Kruskal’s Algorithm

Theorem: Kruskal’s algorithm is correct (computes the MST)

Let T* = the output of Kruskal’s algorithm

Does Kruskal’s output a spanning tree (what are the properties)?

• No cycles (this is given by the definition of the algorithm)

• Connected

15

Proof of Kruskal’s Algorithm

Proof of Connectivity

• Given the Empty Cut Lemma, we only need to show that Kruskal’s produces
a tree T* that crosses every cut.

• Fix a cut (A,B)

• Since G is connected, at least one of its edges crosses the cut (A,B)

• Kruskal’s algorithm considers each edge once

• Let’s fast-forward to the first time that it encounters an edge crossing (A,B)

• Claim: this 1st edge is guaranteed to be in T*
• Given the No Cycle Corollary the claim is true

• It is also the minimum edge to cross the cut (sorted edges)
16

A B

Proof of Kruskal’s Algorithm

For the second part of the proof, we need to prove that T* is minimal

• We just finished proving that Kruskal’s outputs some spanning tree T*

Claim: every edge is justified by the Cut Property

• Remember that satisfying the Cut Property implies that we have an
MST

• This was very explicit in Prim’s Algorithm

17

Prim’s Minimum Spanning Tree Algorithm

X = {s}

T = empty

while X is not V:

 let e = (u, v) be the cheapest edge of G

 with u in X and v not in X

 add e to T

 add v to X

18

Proof of Kruskal’s Algorithm

Proving that we can use the Cut Property

• Consider each iteration where edge (u, v) is added to T*

• Since T* U {(u, v)} has no cycle, T* currently has no u->v path

• Thus, there must be a cut (A, B) separating u and v. For example:
• All findable from u in A given current T*
• All findable form v in B given current T*
• All other vertices can be partitioned arbitrarily

• Hence, (u, v) is the first crossing cut for (A, B)

• Additionally, it must be the cheapest such cut since we sorted the edges

• Finally, the edge (u, v) is justified by the Cut Property

19

Proof of Kruskal’s Algorithm

What have we done?

We proved that Kruskal’s outputs a spanning tree

• No cycles by definition

• Connectivity by the Empty Cut Lemma

We then proved that Kruskal’s outputs the minimum spanning tree

• The Cut Property implies that we are left with the MST

• We showed that Kruskal’s uses the Cut Property because the edges are
sorted

20

Running Time and
Implementation of Kruskal’s

Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

 add e to T

𝑂(𝑚 lg 𝑚)

𝑂(𝑚)

22

How would you detect if adding (u,v) creates creates a cycle?

Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

 add e to T

𝑂(𝑚 lg 𝑚)

𝑂(𝑚)

Naïvely 𝑂(𝑛 + 𝑚)

O(m lg m) + O(m) * O(n+m) O(mn+m2)

23

Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

 add e to T

What can we change (should
we change) to do better?

24

Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

 add e to T

What can we change (should
we change) to do better?

25

The Union-Find Data Structure

• Also known as the disjoint-set data structure

• Used to maintain a partition of objects

P3P1

P2 P4

26

Union-Find

Operations:

• Find(x): return the name of the group to which x belongs

• Union(Pi, Pj): merge the two partitions into a single partition

P3P1

P2 P4

27

How does this help us with Kruskal’s?

• What do we store in the data structure?

• What makes a partition?

17

29

47
31

53

73

67

28

Motivation

• Speed up the way in which we check for cycles.

• How would you implement the Union-Find data structure?

• → Augment each vertex to include another piece of information: the
name of its leader
• Or use a separate data structure (what kind? → what operations matter?)

• Invariant: each vertex knows its leader

• How long does it take to check for a cycle now?

29

Checking for cycles

• Given an edge (u, v), we can check if u and v are in the same partition
in constant time O(1).

𝐹𝑖𝑛𝑑 𝑢 == 𝐹𝑖𝑛𝑑 𝑣 ?

17

29

47
31

53

73

67

What happens during
the next iteration?

What’s the catch?

30

Maintaining the Invariant

• Invariant: each vertex knows its leader

17

29

47
31

53

73

67

What is the maximum number
of vertex leaders that must be

fixed after a union?

Exercise Question 2

31

Union example.

32

Union-Find Data Structure

• Put every element in its own partition
• Every element has its own leader

• Join partitions by copying the leader of the larger partition elements
to all elements of the smaller partition

• You can use an array or hash table to keep track of leaders

• No other information/memory is needed

34

Kruskal’s Minimum Spanning Tree Algorithm

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

 add e to T

 union
What do we have as a

running time now?

35

𝑂(𝑚 lg 𝑚)

𝑂(𝑚)

What happened?

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

 add e to T

 union
We don’t do this every iteration

O(n+m) → O(1) (checking leaders)

O(1) → O(n) (updating leaders)

36

𝑂(𝑚 lg 𝑚)

𝑂(𝑚)

Compared with finding cycles with BFS

Maximum number of leader updates?

How many times can we update the leader of a single vertex?

• We only update the leader of a vertex if we merge it with a bigger
partition.

• How many times can we merge a vertex into a bigger partition?
• (Or: How many times can we double the size of a partition?)

• This is our global view of something happening inside the loop.

37

Exercise Question 3

For e in E:
 if T U {(u, v)} has no cycles
 add e to T
 union

Sort E by edge cost

T = empty

For e in E:

 if T U {(u, v)} has no cycles

 add e to T

 union

𝑂(1) just for the cycle check

Kruskal’s Minimum Spanning Tree Algorithm

𝑂(𝑚 lg 𝑚)

𝑂(𝑚)

O(m) * O(1) O(m lg m)O(m lg m) O(n lg n)

Sort Union Loop Total

𝑂(𝑛 lg 𝑛) for Union (not per iteration)

Technically this is O(n lg n + m lg m)

38

Cutting Edge

• Can we do better than O(m lg m)?

• Yes!

• Average O(m) using a randomized algorithm (1995)
• We do not actually know if a deterministic O(m) algorithm exists.

• We do have a deterministic algorithm that is O(m α(n))
• α is the inverse Ackermann function
• Which is slower than the Iterated logarithm: lg*

• the number of times the logarithm function must be
iteratively applied before the result is less than or equal to 1

• An optimal deterministic algorithm was developed in 2002
• But we do not know the exact asymptotic complexity

• Just that it is between O(m) and O(m α(n))

39

	Slide 1: Kruskal’s MST Algorithm
	Slide 2: Outline
	Slide 3: Extra Resources
	Slide 4: Trick Question for the Day
	Slide 6: Minimum-Spanning-Tree Overview
	Slide 7: Kruskal’s
	Slide 8: Kruskal’s Minimum Spanning Tree Algorithm
	Slide 9
	Slide 10: Proof of Kruskal’s Algorithm
	Slide 11: Graph/Cut/Tree Lemmas and Properties
	Slide 12: Proof of Kruskal’s Algorithm
	Slide 13: Kruskal’s Minimum Spanning Tree Algorithm
	Slide 14: Kruskal’s Minimum Spanning Tree Algorithm
	Slide 15: Proof of Kruskal’s Algorithm
	Slide 16: Proof of Kruskal’s Algorithm
	Slide 17: Proof of Kruskal’s Algorithm
	Slide 18: Prim’s Minimum Spanning Tree Algorithm
	Slide 19: Proof of Kruskal’s Algorithm
	Slide 20: Proof of Kruskal’s Algorithm
	Slide 21: Running Time and Implementation of Kruskal’s
	Slide 22: Kruskal’s Minimum Spanning Tree Algorithm
	Slide 23: Kruskal’s Minimum Spanning Tree Algorithm
	Slide 24: Kruskal’s Minimum Spanning Tree Algorithm
	Slide 25: Kruskal’s Minimum Spanning Tree Algorithm
	Slide 26: The Union-Find Data Structure
	Slide 27: Union-Find
	Slide 28: How does this help us with Kruskal’s?
	Slide 29: Motivation
	Slide 30: Checking for cycles
	Slide 31: Maintaining the Invariant
	Slide 32
	Slide 34: Union-Find Data Structure
	Slide 35: Kruskal’s Minimum Spanning Tree Algorithm
	Slide 36: What happened?
	Slide 37: Maximum number of leader updates?
	Slide 38: Kruskal’s Minimum Spanning Tree Algorithm
	Slide 39: Cutting Edge

