
Minimum Spanning Tree
https://cs.pomona.edu/classes/cs140/

https://cs.pomona.edu/classes/cs140/

Outline

Topics and Learning Objectives

• Discuss spanning tree and minimum spanning trees (MSTs)

• Introduce Prim’s algorithms for MSTs

• Prove correctness of Prim’s MST Algorithm

Exercise

• MST exercise questions 1 and 2

2

Extra Resources

• Introduction to Algorithms, 3rd, chapter 23

• Algorithms Illuminated Part 3, Chapter 15

3

Minimum Spanning Tree

Given a graph, connect all points together as cheaply as possible.

Why are we talking about this?

• It is a fundamental graph problem,

• It has several greedy-based solutions,

• And it has many applications:
• Clustering

• Networking

• Many more

4

Greedy Solution

• Otakar Borůvka in 1926

• Vojtěch Jarník in 1930
• Rediscovered by Robert Prim in 1957
• Rediscovered by Edsger Dijkstra in 1959

• Joseph Kruskal in 1956

Blazingly fast algorithm for what you get as output:

• Can run in O(m lg n)

• Remember: it takes O(n + m) just to read the graph!

• There are an exponential number of possible spanning trees

Bernard Chazelle (1995)
developed a non-greedy algorithm

that runs in O(m α(m,n)).

5

Minimum Spanning Tree

Input: a weighted, undirected graph G = (V, E)

• A similar problem can be constructed for directed graphs, and it is then
called the optimal branching problem

• Each edge e has a cost ce

• Costs can be negative

Output: the minimum cost tree T that spans all vertices

• Calculate cost as the sum of all edge costs

• What does it mean to span a graph?

• The tree T is just a subset of E

6

Spanning Tree Properties

1. The spanning tree T does not have any cycles

2. The subgraph (V, T) is connected

A B

DC

1

3

24

5

What is a spanning tree
 for this graph?

7

Spanning Tree Properties

1. The spanning tree T does not have any cycles

2. The subgraph (V, T) is connected

A B

DC

1

4
What is a spanning tree

 for this graph?

5
This is not the minimum

spanning tree

8

Our MST Problem Assumptions

1. The input graph is connected
• This is easy to check. How?

• Otherwise we’re looking at the minimum spanning forest problem

2. Edge costs are distinct
• All mentioned algorithms are correct with ties, but

• It makes our correctness proof much easier if we assume no ties

9

Prim’s Algorithm (aka Jarník’s or Dijkstra’s)

• A greedy algorithm that finds an MST for a weighted, undirected graph.

• It finds a subset of the edges that forms a tree that includes every
vertex, where the total weight of all the edges in the tree is minimized.

A B

DC

1

3

24

5

What is the minimum
spanning tree

 for this graph?

What is a good criteria
for finding the

minimum spanning tree?

10

Prim’s Algorithm

• A greedy algorithm that finds an MST for a weighted, undirected graph.

• It finds a subset of the edges that forms a tree that includes every
vertex, where the total weight of all the edges in the tree is minimized.

A B

DC

1

24

What is the minimum
spanning tree

 for this graph?

What is a good criteria
for finding the

minimum spanning tree?

11

FUNCTION Prims(G, start_vertex)

 found = {start_vertex}

 mst = {}

 mst_cost = 0

 WHILE found.size != G.vertices.size

 min_weight, min_edge = INFINITY, NONE

 FOR v IN found

 FOR vOther, weight IN G.edges[v]

 IF vOther NOT IN found

 IF weight < min_weight

 min_weight = weight

 min_edge = (v, vOther)

 found.add(min_edge[1])

 mst.add(min_edge)

 mst_cost = mst_cost + min_weight

 RETURN mst, mst_cost 12

How does this compare
with Dijkstra’s Algorithm?

Each iteration:
Extend MST in

cheapest
manner possible

FUNCTION Prims(G, start_vertex)

 found = {start_vertex}

 mst = {}

 mst_cost = 0

 WHILE found.size != G.vertices.size

 min_weight, min_edge = INFINITY, NONE

 FOR v IN found

 FOR vOther, weight IN G.edges[v]

 IF vOther NOT IN found

 IF weight < min_weight

 min_weight = weight

 min_edge = (v, vOther)

 found.add(min_edge[1])

 mst.add(min_edge)

 mst_cost = mst_cost + min_weight

 RETURN mst, mst_cost 13

Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:

1. That Prim’s algorithm creates a spanning tree T*

2. And that T* is the minimum spanning tree

We need to define a few things before we conduct the proof

15

Graph Cuts

A cut of any graph G = (V, E) is a partition of V into two non-empty groups

A B

For a graph with n vertices, how
many possible cuts are there?

a. O(n)
b. O(n2)
c. O(2n)

d. O(nn)

16

Graph Cuts

A cut of any graph G = (V, E) is a partition of V into two non-empty groups

found V - found

For a graph with n vertices, how
many possible cuts are there?

a. O(n)
b. O(n2)
c. O(2n)

d. O(nn)

17

Lemma 1: Empty Cuts

Empty Cut Lemma: a graph is not connected if
there exists a cut (A, B) with zero crossing edges.

Proof A:

• Assume we have a cut with zero crossing
edges

• Pick any u in A and v in B

• There is no path from u to v

• Thus the graph is not connected

Proof B:

• Assume the graph is not connected

• Suppose G has no path from u to v

• Put all vertices reachable from u into A

• Put all other vertices in B

• Thus, no edges cross the cut

u

A

v

B

18

Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
crossing the cut (A, B). Then, there must be at least one more edge in C
that crosses the cut.

A B

19

Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
crossing the cut (A, B). Then, there must be at least one more edge in C
that crosses the cut.

A B

20

Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
crossing the cut (A, B). Then, there must be at least one more edge in C
that crosses the cut.

A B

21

Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge
crossing the cut (A, B). Then, there must be at least one more edge in C
that crosses the cut.

No Cycle Corollary: if e is the only edge crossing
some cut (A, B), then it is not in any cycle.

A B

22

Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:

1. That Prim’s algorithm creates a spanning tree T*

2. And that T* is the minimum spanning tree

We’ll use graph cuts, the double-crossing lemma, and the no-cycle
lemma in this proof.

23

Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:

1. That Prim’s algorithm creates a spanning tree T*

2. And that T* is the minimum spanning tree

We’ll use graph cuts, the double-crossing lemma, and the no-cycle
lemma in this proof.

24

Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that mst spans found
FUNCTION Prims(G, start_vertex)

 found = {start_vertex}

 mst = {}

 mst_cost = 0

 WHILE found.size != G.vertices.size

 min_weight, min_edge = INFINITY, NONE

 FOR v IN found

 FOR vOther, weight IN G.edges[v]

 IF vOther NOT IN found

 IF weight < min_weight

 min_weight = weight

 min_edge = (v, vOther)

 found.add(min_edge[1])

 mst.add(min_edge)

 mst_cost = mst_cost + min_weight

 RETURN mst, mst_cost
25

Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans X

26

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

27

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S

X V-X

v
u

Assume the graph is connected.
28

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S

X V-X

v

u

29

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S
v

X V-X

u

30

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S
v

X V-X

u

31

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S

v

u

X V-X
32

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S

v

u

X V-X
33

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S

X V-X

vu

34

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S

X V-X

vu

35

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S
u

X V-X

v

36

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S
u

X V-X

v

37

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S

X V-X

u v

38

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

S

X V-X

u v

39

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains
the invariant that
T spans X

X V-X
40

Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans X

2. The algorithm is guaranteed to terminate with X = V

41

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

2. The algorithm is
guaranteed to terminate
with X = V

If the algorithm does not terminate,
then by the Empty cut Lemma the
input graph must be disconnected.

42

Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans X

2. The algorithm is guaranteed to terminate with X = V

3. The set of edges, T, does not contain any cycles

43

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

3. The set of edges, T, does
not contain any cycles

By the No cycle corollary, the
addition of e cannot create a cycle

(it is the only edge to cross the cut).
44

Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans X

2. The algorithm is guaranteed to terminate with X = V
• Could anything go wrong here?
• Under what circumstances cannot we not find an edge to

cross the cut (X, V - X)?
• By the Empty cut Lemma the input graph must be disconnected
• However, we stated that only connected graphs would be used as inputs

3. The algorithm is guaranteed to create a tree (no cycles)
• Consider any iteration and our sets X and T
• Suppose we add an edge e to T
• The edge e must be the first edge to cross (X, V - X) being added to T
• By the No cycle corollary, the addition of e cannot create a cycle (only edge to cross the cut)

45

Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans X

2. The algorithm is guaranteed to terminate with X = V
• Could anything go wrong here?
• Under what circumstances cannot we not find an edge to

cross the cut (X, V - X)?
• By the Empty cut Lemma the input graph must be disconnected
• However, we stated that only connected graphs would be used as inputs

3. The algorithm is guaranteed to create a tree (no cycles)
• Consider any iteration and our sets X and T
• Suppose we add an edge e to T
• The edge e must be the first edge to cross (X, V - X) being added to T
• By the No cycle corollary, the addition of e cannot create a cycle (only edge to cross the cut)

46

Claim 2: Prim’s outputs the Minimum ST

Before we can prove that the output is an MST, we need another helper
definition

• Consider an edge e of G

• Suppose you can find a cut (A, B) such that e is the cheapest edge of
G that crosses (A, B)

• Cut Property: e belongs to the MST of G

• Assume that this is true! We’ll prove it later

A B

DC

1

3

24

5

47

Claim 2: Prim’s outputs the MST

• Claim: the Cut Property implies that Prim’s algorithm outputs the MST

48

Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of G

 with u in X and v not in X

 add e to T

 add v to X

Claim: the Cut Property implies
that Prim’s algorithm outputs
the MST

Cut Property: if e is the cheapest
edge that crosses the cut (X, V – X)

then it must be in the MST.
49

Claim 2: Prim’s outputs the MST

• Claim: the Cut Property implies that Prim’s algorithm outputs the MST

• Key point: every edge e in T is explicitly chosen via the cut property

At any given iteration:

• The tree T is a subset of the MST

• After termination, we are guaranteed that T is a spanning tree

• Given the cut property, we are also now guaranteed that T is minimal
spanning tree

50

Claim 2: Prim’s outputs the MST

• Claim: the Cut Property implies that Prim’s algorithm outputs the MST

• Key point: every edge e in T is explicitly chosen via the cut property

At any given iteration:

• The tree T is a subset of the MST

• After termination, we are guaranteed that T is a spanning tree

• Given the cut property, we are also now guaranteed that T is minimal
spanning tree

51

Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:

1. That Prim’s algorithm creates a spanning tree T*

2. And that T* is the minimum spanning tree

* Need to prove the cut property!

52

Proof of the Cut Property

Assume distinct edge costs

• Here is where our assumption of distinct edge costs is useful.

Cut Property: if e is the cheapest edge that crosses the cut (X, V – X)
then it must be in the MST

We are going to prove this using exchange argument contradiction

54

Proof of the Cut Property

Claim: Suppose there is an edge e that is the cheapest one to cross a
cut (X, V-X), but e is not in the MST T*

• What are we going to exchange?

Idea: exchange e with another edge in T* to make the cost of T* even
cheaper (which would result in a contradiction)

What edge in T* can we swap with e?

55

Proof of the Cut Property

• The edge e is the cheapest to cross (X, V-X)

• MST T* must contain some other edge that crosses (X, V-X), otherwise T* would be disconnected.

• Let’s call this other edge f

• Let’s try to exchange e and f to get a spanning tree that is cheaper than T*

e

X V-X

f

56

Proof of the Cut Property

Is T* U {e} – {f} a spanning tree of G?

e

f

Yes No Only if e is the cheapest edge Maybe

X V-X
57

Proof of the Cut Property

Is T* U {e} – {f} a spanning tree of G?

e

f

Yes No Only if e is the cheapest edge Maybe

g
X V-X

58

Proof of the Cut Property

Is T* U {e} – {f} a spanning tree of G?

e

f

Yes No Only if e is the cheapest edge Maybe

g
X V-X

59

Proof of the Cut Property

Is T* U {e} – {f} a spanning tree of G?

e

f

Yes No Only if e is the cheapest edge Maybe

g
X V-X

60

Proof of the Cut Property

Hope: that we can always find a suitable edge e’ so that exchanging
edges yields a valid spanning tree

f

g
X V-X

Solid green lines are those that are currently part of T*
Rainbow lines are other edges

61

Proof of the Cut Property

Hope: that we can always find a suitable edge e’ so that exchanging
edges yields a valid spanning tree

f

g
X V-X

Solid green lines are those that are currently part of T*

62

Proof of the Cut Property

Add the edge e.

What does adding e do?

Which one of these edges can we exchange with e?

e

f

g
X V-X

Solid green lines are those that are currently part of T*

A tree will always have n-1 edges It creates a cycle that crosses the cut!

63

Proof of the Cut Property

• Let C be the cycle created in T* by adding the edge e

• Find all edges that cross (X, V-X)

• By the double-crossing Lemma, there must be an edge e’ that crosses (X, V-X)

e

f

g
X V-X

C

e'
64

Proof of the Cut Property

• Let T = T* U {e} – {e’}

e

f

X V-Xe'

Exchange

The exchange argument was easier for greedy scheduling
since every exchange resulted in a valid schedule

65

Proof of the Cut Property

• Let T = T* U {e} – {e’}

e

f

X V-X

Exchange

66

Proof of the Cut Property

• Let T = T* U {e} – {e’}

• T is also a spanning tree

• Since ce < ce’ T is a cheaper spanning tree than T* (CONTRADICTION)

e

f

X V-X

Exchange

67

Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given
a connected graph.

Need to prove two things:

1. That Prim’s algorithm creates a spanning tree T*

2. And that T* is the minimum spanning tree

* Need to prove the cut property!

68

What is the running time of Prim’s?

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E

 with u in X and v not in X

 add e to T

 add v to X

O(n) for this while loop

O(m) to find cheapest edge
that crosses the cut (X, V-X)

Can we do better
than O(mn)?

Can easily get to
O(m lg n) using a heap

(or faster with a
Fibonacci Heap)

69

	Slide 1: Minimum Spanning Tree
	Slide 2: Outline
	Slide 3: Extra Resources
	Slide 4: Minimum Spanning Tree
	Slide 5: Greedy Solution
	Slide 6: Minimum Spanning Tree
	Slide 7: Spanning Tree Properties
	Slide 8: Spanning Tree Properties
	Slide 9: Our MST Problem Assumptions
	Slide 10: Prim’s Algorithm (aka Jarník’s or Dijkstra’s)
	Slide 11: Prim’s Algorithm
	Slide 12
	Slide 13
	Slide 15: Proof of Prim’s
	Slide 16: Graph Cuts
	Slide 17: Graph Cuts
	Slide 18: Lemma 1: Empty Cuts
	Slide 19: Lemma 2: Double-Crossings
	Slide 20: Lemma 2: Double-Crossings
	Slide 21: Lemma 2: Double-Crossings
	Slide 22: Lemma 2: Double-Crossings
	Slide 23: Proof of Prim’s
	Slide 24: Proof of Prim’s
	Slide 25: Claim 1: Prim’s outputs a spanning tree
	Slide 26: Claim 1: Prim’s outputs a spanning tree
	Slide 27: Simplified Pseudocode for Prim’s Algorithm
	Slide 28: Simplified Pseudocode for Prim’s Algorithm
	Slide 29: Simplified Pseudocode for Prim’s Algorithm
	Slide 30: Simplified Pseudocode for Prim’s Algorithm
	Slide 31: Simplified Pseudocode for Prim’s Algorithm
	Slide 32: Simplified Pseudocode for Prim’s Algorithm
	Slide 33: Simplified Pseudocode for Prim’s Algorithm
	Slide 34: Simplified Pseudocode for Prim’s Algorithm
	Slide 35: Simplified Pseudocode for Prim’s Algorithm
	Slide 36: Simplified Pseudocode for Prim’s Algorithm
	Slide 37: Simplified Pseudocode for Prim’s Algorithm
	Slide 38: Simplified Pseudocode for Prim’s Algorithm
	Slide 39: Simplified Pseudocode for Prim’s Algorithm
	Slide 40: Simplified Pseudocode for Prim’s Algorithm
	Slide 41: Claim 1: Prim’s outputs a spanning tree
	Slide 42: Simplified Pseudocode for Prim’s Algorithm
	Slide 43: Claim 1: Prim’s outputs a spanning tree
	Slide 44: Simplified Pseudocode for Prim’s Algorithm
	Slide 45: Claim 1: Prim’s outputs a spanning tree
	Slide 46: Claim 1: Prim’s outputs a spanning tree
	Slide 47: Claim 2: Prim’s outputs the Minimum ST
	Slide 48: Claim 2: Prim’s outputs the MST
	Slide 49: Simplified Pseudocode for Prim’s Algorithm
	Slide 50: Claim 2: Prim’s outputs the MST
	Slide 51: Claim 2: Prim’s outputs the MST
	Slide 52: Proof of Prim’s
	Slide 54: Proof of the Cut Property
	Slide 55: Proof of the Cut Property
	Slide 56: Proof of the Cut Property
	Slide 57: Proof of the Cut Property
	Slide 58: Proof of the Cut Property
	Slide 59: Proof of the Cut Property
	Slide 60: Proof of the Cut Property
	Slide 61: Proof of the Cut Property
	Slide 62: Proof of the Cut Property
	Slide 63: Proof of the Cut Property
	Slide 64: Proof of the Cut Property
	Slide 65: Proof of the Cut Property
	Slide 66: Proof of the Cut Property
	Slide 67: Proof of the Cut Property
	Slide 68: Proof of Prim’s
	Slide 69: What is the running time of Prim’s?

