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Outline

Topics and Learning Objectives

• Discuss spanning tree and minimum spanning trees (MSTs)

• Introduce Prim’s algorithms for MSTs

• Prove correctness of Prim’s MST Algorithm

Exercise

• MST exercise questions 1 and 2
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Extra Resources

• Introduction to Algorithms, 3rd, chapter 23

• Algorithms Illuminated Part 3, Chapter 15
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Minimum Spanning Tree

Given a graph, connect all points together as cheaply as possible.

Why are we talking about this?

• It is a fundamental graph problem,

• It has several greedy-based solutions,

• And it has many applications:
• Clustering

• Networking

• Many more
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Greedy Solution

• Otakar Borůvka in 1926

• Vojtěch Jarník in 1930
• Rediscovered by Robert Prim in 1957
• Rediscovered by Edsger Dijkstra in 1959

• Joseph Kruskal in 1956

Blazingly fast algorithm for what you get as output:

• Can run in O(m lg n)

• Remember: it takes O(n + m) just to read the graph!

• There are an exponential number of possible spanning trees

Bernard Chazelle (1995) 
developed a non-greedy algorithm 

that runs in O(m α(m,n)).
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Minimum Spanning Tree

Input: a weighted, undirected graph G = (V, E)

• A similar problem can be constructed for directed graphs, and it is then 
called the optimal branching problem

• Each edge e has a cost ce

• Costs can be negative

Output: the minimum cost tree T that spans all vertices

• Calculate cost as the sum of all edge costs

• What does it mean to span a graph?

• The tree T is just a subset of E
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Spanning Tree Properties

1. The spanning tree T does not have any cycles

2. The subgraph (V, T) is connected
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What is a spanning tree
 for this graph?

7



Spanning Tree Properties

1. The spanning tree T does not have any cycles

2. The subgraph (V, T) is connected
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4
What is a spanning tree

 for this graph?

5
This is not the minimum 

spanning tree
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Our MST Problem Assumptions

1. The input graph is connected
• This is easy to check. How?

• Otherwise we’re looking at the minimum spanning forest problem

2. Edge costs are distinct
• All mentioned algorithms are correct with ties, but

• It makes our correctness proof much easier if we assume no ties
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Prim’s Algorithm (aka Jarník’s or Dijkstra’s)

• A greedy algorithm that finds an MST for a weighted, undirected graph.

• It finds a subset of the edges that forms a tree that includes every 
vertex, where the total weight of all the edges in the tree is minimized.
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What is the minimum 
spanning tree

 for this graph?

What is a good criteria
for finding the

minimum spanning tree?
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Prim’s Algorithm

• A greedy algorithm that finds an MST for a weighted, undirected graph.

• It finds a subset of the edges that forms a tree that includes every 
vertex, where the total weight of all the edges in the tree is minimized.
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FUNCTION Prims(G, start_vertex)

 found = {start_vertex}

 mst = {}

 mst_cost = 0

 WHILE found.size != G.vertices.size

   min_weight, min_edge = INFINITY, NONE

   FOR v IN found

    FOR vOther, weight IN G.edges[v]

      IF vOther NOT IN found

       IF weight < min_weight

         min_weight = weight

         min_edge = (v, vOther)

   found.add(min_edge[1])

   mst.add(min_edge)

   mst_cost = mst_cost + min_weight

 RETURN mst, mst_cost 12



How does this compare 
with Dijkstra’s Algorithm?

Each iteration:
Extend MST in 

cheapest 
manner possible

FUNCTION Prims(G, start_vertex)

 found = {start_vertex}

 mst = {}

 mst_cost = 0

 WHILE found.size != G.vertices.size

   min_weight, min_edge = INFINITY, NONE

   FOR v IN found

    FOR vOther, weight IN G.edges[v]

      IF vOther NOT IN found

       IF weight < min_weight

         min_weight = weight

         min_edge = (v, vOther)

   found.add(min_edge[1])

   mst.add(min_edge)

   mst_cost = mst_cost + min_weight

 RETURN mst, mst_cost 13



Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given 
a connected graph.

Need to prove two things:

1. That Prim’s algorithm creates a spanning tree T*

2. And that T* is the minimum spanning tree

We need to define a few things before we conduct the proof
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Graph Cuts

A cut of any graph G = (V, E) is a partition of V into two non-empty groups

A B

For a graph with n vertices, how 
many possible cuts are there?

a. O(n)
b. O(n2)
c. O(2n) 

d. O(nn)
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Graph Cuts

A cut of any graph G = (V, E) is a partition of V into two non-empty groups

found V - found

For a graph with n vertices, how 
many possible cuts are there?

a. O(n)
b. O(n2)
c. O(2n) 

d. O(nn)
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Lemma 1: Empty Cuts

Empty Cut Lemma: a graph is not connected if 
there exists a cut (A, B) with zero crossing edges.

Proof A:

• Assume we have a cut with zero crossing 
edges

• Pick any u in A and v in B

• There is no path from u to v

• Thus the graph is not connected

Proof B:

• Assume the graph is not connected

• Suppose G has no path from u to v

• Put all vertices reachable from u into A

• Put all other vertices in B

• Thus, no edges cross the cut

u

A

v

B
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Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge 
crossing the cut (A, B). Then, there must be at least one more edge in C 
that crosses the cut.

A B
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Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge 
crossing the cut (A, B). Then, there must be at least one more edge in C 
that crosses the cut.

A B
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Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge 
crossing the cut (A, B). Then, there must be at least one more edge in C 
that crosses the cut.

A B
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Lemma 2: Double-Crossings

double-crossing Lemma: suppose the cycle C has an edge 
crossing the cut (A, B). Then, there must be at least one more edge in C 
that crosses the cut.

No Cycle Corollary: if e is the only edge crossing 
some cut (A, B), then it is not in any cycle.

A B
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Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given 
a connected graph.

Need to prove two things:

1. That Prim’s algorithm creates a spanning tree T*

2. And that T* is the minimum spanning tree

We’ll use graph cuts, the double-crossing lemma, and the no-cycle 
lemma in this proof.
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Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given 
a connected graph.

Need to prove two things:

1. That Prim’s algorithm creates a spanning tree T*

2. And that T* is the minimum spanning tree

We’ll use graph cuts, the double-crossing lemma, and the no-cycle 
lemma in this proof.
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Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that mst spans found
FUNCTION Prims(G, start_vertex)

 found = {start_vertex}

 mst = {}

 mst_cost = 0

 WHILE found.size != G.vertices.size

   min_weight, min_edge = INFINITY, NONE

   FOR v IN found

    FOR vOther, weight IN G.edges[v]

      IF vOther NOT IN found

       IF weight < min_weight

         min_weight = weight

         min_edge = (v, vOther)

   found.add(min_edge[1])

   mst.add(min_edge)

   mst_cost = mst_cost + min_weight

 RETURN mst, mst_cost
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Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans X
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

  with u in X and v not in X

 add e to T

 add v to X
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

  with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains 
the invariant that 
T spans X

S

X V-X

v
u

Assume the graph is connected.
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

  with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains 
the invariant that 
T spans X

S

X V-X

v

u
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

  with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains 
the invariant that 
T spans X

S
v

X V-X

u
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

  with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains 
the invariant that 
T spans X

S
v

X V-X

u
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

  with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains 
the invariant that 
T spans X

S

v

u

X V-X
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

  with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains 
the invariant that 
T spans X

S

v

u

X V-X
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

  with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains 
the invariant that 
T spans X

S

X V-X

vu
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

  with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains 
the invariant that 
T spans X

S

X V-X

vu
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

  with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains 
the invariant that 
T spans X

S
u

X V-X

v
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

  with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains 
the invariant that 
T spans X

S
u

X V-X

v
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

  with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains 
the invariant that 
T spans X

S

X V-X

u v
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

  with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains 
the invariant that 
T spans X

S

X V-X

u v
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

  with u in X and v not in X

 add e to T

 add v to X

1. Prim’s algorithm maintains 
the invariant that 
T spans X

X V-X
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Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans X

2. The algorithm is guaranteed to terminate with X = V
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

  with u in X and v not in X

 add e to T

 add v to X

2. The algorithm is 
guaranteed to terminate 
with X = V

If the algorithm does not terminate, 
then by the Empty cut Lemma the 
input graph must be disconnected.
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Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans X

2. The algorithm is guaranteed to terminate with X = V

3. The set of edges, T, does not contain any cycles
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

 with u in X and v not in X

 add e to T

 add v to X

3. The set of edges, T, does 
not contain any cycles

By the No cycle corollary, the 
addition of e cannot create a cycle 

(it is the only edge to cross the cut).
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Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans X

2. The algorithm is guaranteed to terminate with X = V
• Could anything go wrong here?
• Under what circumstances cannot we not find an edge to 

cross the cut (X, V - X)?
• By the Empty cut Lemma the input graph must be disconnected
• However, we stated that only connected graphs would be used as inputs

3. The algorithm is guaranteed to create a tree (no cycles)
• Consider any iteration and our sets X and T
• Suppose we add an edge e to T
• The edge e must be the first edge to cross (X, V - X) being added to T
• By the No cycle corollary, the addition of e cannot create a cycle (only edge to cross the cut)
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Claim 1: Prim’s outputs a spanning tree

1. Prim’s algorithm maintains the invariant that T spans X

2. The algorithm is guaranteed to terminate with X = V
• Could anything go wrong here?
• Under what circumstances cannot we not find an edge to 

cross the cut (X, V - X)?
• By the Empty cut Lemma the input graph must be disconnected
• However, we stated that only connected graphs would be used as inputs

3. The algorithm is guaranteed to create a tree (no cycles)
• Consider any iteration and our sets X and T
• Suppose we add an edge e to T
• The edge e must be the first edge to cross (X, V - X) being added to T
• By the No cycle corollary, the addition of e cannot create a cycle (only edge to cross the cut)
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Claim 2: Prim’s outputs the Minimum ST

Before we can prove that the output is an MST, we need another helper 
definition

• Consider an edge e of G

• Suppose you can find a cut (A, B) such that e is the cheapest edge of 
G that crosses (A, B)

• Cut Property: e belongs to the MST of G

• Assume that this is true! We’ll prove it later

A B

DC

1

3

24

5
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Claim 2: Prim’s outputs the MST

• Claim: the Cut Property implies that Prim’s algorithm outputs the MST
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Simplified Pseudocode for Prim’s Algorithm

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of G 

  with u in X and v not in X

 add e to T

 add v to X

Claim: the Cut Property implies 
that Prim’s algorithm outputs 
the MST

Cut Property: if e is the cheapest 
edge that crosses the cut (X, V – X) 

then it must be in the MST.
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Claim 2: Prim’s outputs the MST

• Claim: the Cut Property implies that Prim’s algorithm outputs the MST

• Key point: every edge e in T is explicitly chosen via the cut property

At any given iteration:

• The tree T is a subset of the MST

• After termination, we are guaranteed that T is a spanning tree

• Given the cut property, we are also now guaranteed that T  is minimal 
spanning tree
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Claim 2: Prim’s outputs the MST

• Claim: the Cut Property implies that Prim’s algorithm outputs the MST

• Key point: every edge e in T is explicitly chosen via the cut property

At any given iteration:

• The tree T is a subset of the MST

• After termination, we are guaranteed that T is a spanning tree

• Given the cut property, we are also now guaranteed that T  is minimal 
spanning tree
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Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given 
a connected graph.

Need to prove two things:

1. That Prim’s algorithm creates a spanning tree T*

2. And that T* is the minimum spanning tree

* Need to prove the cut property!
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Proof of the Cut Property

Assume distinct edge costs

• Here is where our assumption of distinct edge costs is useful.

Cut Property: if e is the cheapest edge that crosses the cut (X, V – X) 
then it must be in the MST

We are going to prove this using exchange argument contradiction
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Proof of the Cut Property

Claim: Suppose there is an edge e that is the cheapest one to cross a 
cut (X, V-X), but e is not in the MST T*

• What are we going to exchange?

Idea: exchange e with another edge in T* to make the cost of T* even 
cheaper (which would result in a contradiction)

What edge in T* can we swap with e?
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Proof of the Cut Property

• The edge e is the cheapest to cross (X, V-X)

• MST T* must contain some other edge that crosses (X, V-X), otherwise T* would be disconnected. 

• Let’s call this other edge f

• Let’s try to exchange e and f to get a spanning tree that is cheaper than T*

e

X V-X

f
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Proof of the Cut Property

Is T* U {e} – {f} a spanning tree of G?

e

f

Yes No Only if e is the cheapest edge Maybe

X V-X
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Proof of the Cut Property

Is T* U {e} – {f} a spanning tree of G?

e

f

Yes No Only if e is the cheapest edge Maybe

g
X V-X
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Proof of the Cut Property

Is T* U {e} – {f} a spanning tree of G?

e

f

Yes No Only if e is the cheapest edge Maybe

g
X V-X
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Proof of the Cut Property

Is T* U {e} – {f} a spanning tree of G?

e

f

Yes No Only if e is the cheapest edge Maybe

g
X V-X
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Proof of the Cut Property

Hope: that we can always find a suitable edge e’ so that exchanging 
edges yields a valid spanning tree

f

g
X V-X

Solid green lines are those that are currently part of T*
Rainbow lines are other edges
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Proof of the Cut Property

Hope: that we can always find a suitable edge e’ so that exchanging 
edges yields a valid spanning tree

f

g
X V-X

Solid green lines are those that are currently part of T*
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Proof of the Cut Property

Add the edge e.

What does adding e do?

Which one of these edges can we exchange with e?

e

f

g
X V-X

Solid green lines are those that are currently part of T*

A tree will always have n-1 edges It creates a cycle that crosses the cut!
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Proof of the Cut Property

• Let C be the cycle created in T* by adding the edge e

• Find all edges that cross (X, V-X)

• By the double-crossing Lemma, there must be an edge e’ that crosses (X, V-X)

e

f

g
X V-X

C

e'
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Proof of the Cut Property

• Let T =  T* U {e} – {e’}

e

f

X V-Xe'

Exchange

The exchange argument was easier for greedy scheduling 
since every exchange resulted in a valid schedule
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Proof of the Cut Property

• Let T =  T* U {e} – {e’}

e

f

X V-X

Exchange
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Proof of the Cut Property

• Let T =  T* U {e} – {e’}

• T is also a spanning tree

• Since ce < ce’ T is a cheaper spanning tree than T* (CONTRADICTION)

e

f

X V-X

Exchange
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Proof of Prim’s

Theorem: Prim’s algorithm always computes the (or a) MST when given 
a connected graph.

Need to prove two things:

1. That Prim’s algorithm creates a spanning tree T*

2. And that T* is the minimum spanning tree

* Need to prove the cut property!
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What is the running time of Prim’s?

X = {s} // list of found nodes

T = empty // edges that belong to MST

while X is not V:

 let e = (u, v) be the cheapest edge of E 

  with u in X and v not in X

 add e to T

 add v to X

O(n) for this while loop

O(m) to find cheapest edge 
that crosses the cut (X, V-X)

Can we do better 
than O(mn)?

Can easily get to 
O(m lg n) using a heap

(or faster with a 
Fibonacci Heap)
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